
Altair HyperMesh 2021

Reference Guide: Solver Templates

Updated: 01/13/2021

Intellectual Property Rights Notice
Copyrights, Trademarks, Trade Secrets, Patents & Third Party Software Licenses

Altair Engineering Inc. Copyright © 1986-2020. All Rights Reserved.

Copyrights in the below are held by Altair Engineering, Inc., except where otherwise explicitly stated.
This Intellectual Property Rights Notice is exemplary, not exhaustive.

Note: Pre-release versions of Altair software are provided ‘as is’, without warranty of any
kind. Usage of pre-release versions is strictly limited to non-production purposes.

Altair HyperWorks™ - The Platform for Innovation™

Altair AcuConsole™ ©2006-2020

Altair AcuSolve™ ©1997-2020

Altair Activate® ©1989-2020 (formerly solidThinking Activate)

Altair Compose® ©2007-2020 (formerly solidThinking Compose)

Altair ConnectMe™ ©2014-2020

Altair EDEM ©2005-2020 DEM Solutions Ltd, ©2019-2020 Altair Engineering Inc.

Altair ElectroFlo™ ©1992-2020

Altair Embed® ©1989-2020 (formerly solidThinking Embed)

• Altair Embed SE ©1989-2020 (formerly solidThinking Embed SE)

• Altair Embed/Digital Power Designer ©2012-2020

• Altair Embed Viewer ©1996-2020

Altair ESAComp™ ©1992-2020

Altair Feko™ ©1999-2014 Altair Development S.A. (Pty) Ltd., ©2014-2020 Altair Engineering Inc.

Altair Flux™ ©1983-2020

Altair FluxMotor™ ©2017-2020

Altair HyperCrash™ ©2001-2020

Altair HyperGraph™ ©1995-2020

Altair HyperLife™ ©1990-2020

Altair HyperMesh™ ©1990-2020

Altair HyperStudy™ ©1999-2020

Altair HyperView™ ©1999-2020

Altair HyperXtrude™ ©1999-2020

Altair Inspire™ ©2009-2020 including Altair Inspire Motion, Altair Inspire Structures, and Altair Inspire
Print3D

Altair Inspire Cast ©2011-2020 (formerly Click2Cast)

Altair HyperMesh Solver Templates 2021 Reference Guide
Intellectual Property Rights Notice p.iii

Altair Inspire ElectroFlo ©1992-2020

Altair Inspire Extrude Metal ©1996-2020 (formerly Click2Extrude-Metal)

Altair Inspire Extrude Polymer ©1996-2020 (formerly Click2Extrude-Polymer)

Altair Inspire Form ©1998-2020 (formerly Click2Form)

Altair Inspire Friction Stir Welding ©1996-2020

Altair Inspire Mold ©2009-2020

Altair Inspire Play ©2009-2020

Altair Inspire PolyFoam ©2009-2020

Altair Inspire Render ©1993-2016 Solid Iris Technologies Software Development One PLLC,
©2016-2020 Altair Engineering Inc (formerly Thea Studio)

Altair Inspire Resin Transfer Molding ©1990-2020

Altair Inspire Studio ©1993-2020 (formerly ‘Evolve’)

Altair Manufacturing Solver™ ©2011-2020

Altair Material Data Center ©2019-2020

Altair MotionSolve™ ©2002-2020

Altair MotionView™ ©1993-2020

Altair Multiscale Designer™ ©2011-2020

Altair nanoFluidX™ ©2013-2018 Fluidyna GmbH, ©2018-2020 Altair Engineering Inc.

Altair newFASANT ©2010-2020

Altair OptiStruct™ ©1996-2020

Altair PollEx ©2003-2020

Altair Radioss™ ©1986-2020

Altair Seam™ ©1985-2019 Cambridge Collaborative, Inc., ©2019-2020 Altair Engineering Inc.

Altair SimLab™ ©2004-2020

Altair SimSolid™ ©2015-2020

Altair ultraFluidX™ ©2010-2018 Fluidyna GmbH, ©2018-2020 Altair Engineering Inc.

Altair Virtual Wind Tunnel™ ©2012-2020

Altair WinProp™ ©2000-2020

Altair WRAP ©1998-2020 WRAP International AB, ©2020 Altair Engineering AB

Altair Packaged Solution Offerings (PSOs)
Altair Automated Reporting Director™ ©2008-2020

Altair GeoMechanics Director™ ©2011-2020

Altair Impact Simulation Director™ ©2010-2020

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
Intellectual Property Rights Notice p.iv

Altair Model Mesher Director™ ©2010-2020

Altair NVH Director™ ©2010-2020

Altair Squeak and Rattle Director™ ©2012-2020

Altair Virtual Gauge Director™ ©2012-2020

Altair Weight Analytics™ ©2013-2020

Altair Weld Certification Director™ ©2014-2020

Altair Multi-Disciplinary Optimization Director™ ©2012-2020

Altair PBSWorks™ - Accelerating Innovation in the Cloud™

Altair PBS Professional® ©1994-2020

Altair Control™ ©2008-2020; (formerly PBS Control)

Altair Access™ ©2008-2020; (formerly PBS Access)

Altair Accelerator™ ©1995-2020; (formerly NetworkComputer)

Altair Accelerator™ Plus©1995-2020; (formerly WorkloadXelerator)

Altair FlowTracer™ ©1995-2020; (formerly FlowTracer)

Altair Allocator™ ©1995-2020; (formerly LicenseAllocator)

Altair Monitor™ ©1995-2020; (formerly LicenseMonitor)

Altair Hero™ ©1995-2020; (formerly HERO)

Altair Software Asset Optimization (SAO) ©2007-2020

Note:

Compute Manager™ ©2012-2017 is now part of Altair Access

Display Manager™ ©2013-2017 is now part of Altair Access

PBS Application Services™ ©2008-2017 is now part of Altair Access

PBS Analytics™ ©2008-2017 is now part of Altair Control

PBS Desktop™ ©2008-2012 is now part of Altair Access, specifically Altair Access
desktop, which also has Altair Access web and Altair Access mobile

e-Compute™ ©2000-2010 was replaced by “Compute Manager” which is now Altair
Access

Altair KnowledgeWorks™

Altair Knowledge Studio® ©1994-2020 Angoss Software Corporation, ©2020 Altair Engineering Inc.

Altair Knowledge Studio for Apache Spark ©1994-2020 Angoss Software Corporation, ©2020 Altair
Engineering Inc.

Altair Knowledge Seeker™ ©1994-2020 Angoss Software Corporation, ©2020 Altair Engineering Inc.

Altair Knowledge Hub™ ©2017-2020 Datawatch Corporation, ©2020 Altair Engineering Inc.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
Intellectual Property Rights Notice p.v

Altair Monarch™ ©1996-2020 Datawatch Corporation, ©2020 Altair Engineering Inc.

Altair Monarch Server ©1996-2020 Datawatch Corporation, ©2020 Altair Engineering Inc.

Altair Panopticon™ ©2004-2020 Datawatch Corporation, ©2020 Altair Engineering Inc.

Altair SmartWorks™

Altair SmartCore™ ©2011-2020 Altair Engineering Inc.

Altair SmartEdge™ ©2011-2020 Altair Engineering Inc.

Altair SmartSight™ ©2011-2020 Altair Engineering Inc.

Altair One™ ©1994-2020

Altair intellectual property rights are protected under U.S. and international laws and treaties.
Additionally, Altair software may be protected by patents or other intellectual property rights. All other
marks are the property of their respective owners.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information.

Not for use or disclosure outside of Altair and its licensed clients. Information contained in Altair
software shall not be decompiled, disassembled, “unlocked”, reverse translated, reverse engineered,
or publicly displayed or publicly performed in any manner. Usage of the software is only as explicitly
permitted in the end user software license agreement. Copyright notice does not imply publication.

Third party software licenses
AcuConsole contains material licensed from Intelligent Light (www.ilight.com) and used by permission.

Software Security Measures:

Altair Engineering Inc. and its subsidiaries and affiliates reserve the right to embed software security
mechanisms in the Software for the purpose of detecting the installation and/or use of illegal copies of
the Software. The Software may collect and transmit non-proprietary data about those illegal copies.
Data collected will not include any customer data created by or used in connection with the Software
and will not be provided to any third party, except as may be required by law or legal process or to
enforce our rights with respect to the use of any illegal copies of the Software. By using the Software,
each user consents to such detection and collection of data, as well as its transmission and use if an
illegal copy of the Software is detected. No steps may be taken to avoid or detect the purpose of any
such security mechanisms.

Proprietary Information of Altair Engineering

Technical Support
Altair provides comprehensive software support via web FAQs, tutorials, training classes, telephone, and
e-mail.

Altair One Customer Portal
Altair One (https://altairone.com/) is Altair’s customer portal giving you access to product downloads,
a Knowledge Base, and customer support. We strongly recommend that all users create an Altair One
account and use it as their primary means of requesting technical support.

Once your customer portal account is set up, you can directly get to your support page via this link:
www.altair.com/customer-support/

Altair Training Classes
Altair’s in-person, online, and self-paced trainings provide hands-on introduction to our products,
focusing on overall functionality. Trainings are conducted at our corporate and regional offices or at your
facility.

For more information please visit: https://learn.altair.com/

If you are interested in training at your facility, please contact your account manager for more details.
If you do not know who your account manager is, please contact your local support office and they will
connect you with your account manager.

Telephone and E-mail
If you are unable to contact Altair support via the customer portal, you may reach out to technical
support via phone or e-mail. Use the following table as a reference to locate the support office for your
region.

When contacting Altair support, please specify the product and version number you are using along
with a detailed description of the problem. It is beneficial for the support engineer to know what type
of workstation, operating system, RAM, and graphics board you have, so please include that in your
communication.

Location Telephone E-mail

Australia +61 649 413 7981 anzsupport@altair.com

Brazil +55 113 884 0414 br_support@altair.com

Canada +1 416 447 6463 support@altairengineering.ca

China +86 400 619 6186 support@altair.com.cn

France +33 141 33 0992 francesupport@altair.com

Germany +49 703 162 0822 hwsupport@altair.de

Greece +30 231 047 3311 eesupport@altair.com

https://altairone.com/
https://www.altair.com/customer-support/
https://learn.altair.com/
mailto:anzsupport@altair.com
mailto:br_support@altair.com
mailto:support@altairengineering.ca
mailto:support@altair.com.cn
mailto:francesupport@altair.com
mailto:hwsupport@altair.de
mailto:eesupport@altair.com

Altair HyperMesh Solver Templates 2021 Reference Guide
Technical Support p.vii

Location Telephone E-mail

India +91 806 629 4500

+1 800 425 0234 (toll free)

support@india.altair.com

Israel israelsupport@altair.com

Italy +39 800 905 595 support@altairengineering.it

Japan +81 36 225 5830 support@altairjp.co.jp

Malaysia +60 32 742 7890 aseansupport@altair.com

Mexico +52 555 658 6808 mx-support@altair.com

New Zealand +64 9 413 7981 anzsupport@altair.com

South Africa +27 21 831 1500 support@altair.co.za

South Korea +82 704 050 9200 support@altair.co.kr

Spain +34 910 810 080 support-spain@altair.com

Sweden +46 46 460 2828 support@altair.se

United Kingdom +44 192 646 8600 support@uk.altair.com

United States +1 248 614 2425 hwsupport@altair.com

If your company is being serviced by an Altair partner, you can find that information on our web site at
https://www.altair.com/PartnerSearch/.

See www.altair.com for complete information on Altair, our team, and our products.

Proprietary Information of Altair Engineering

mailto:support@india.altair.com
mailto:israelsupport@altair.com
mailto:support@altairengineering.it
mailto:support@altairjp.co.jp
mailto:aseansupport@altair.com
mailto:mx-support@altair.com
mailto:anzsupport@altair.com
mailto:support@altair.co.za
mailto:support@altair.co.kr
mailto:support-spain@altair.com
mailto:support@altair.se
mailto:support@uk.altair.com
mailto:hwsupport@altair.com
https://www.altair.com/PartnerSearch
http://www.altair.com/

Contents
Intellectual Property Rights Notice.. ii
Technical Support...vi

1 Solver Templates.. 9

1.1 Card Previewer..10
1.2 Creating Solver Templates.. 12

1.2.1 Organization... 12
1.2.2 Data Entry and Access.. 13
1.2.3 Mathematical Expressions...14
1.2.4 Equalities, Inequalities and Logical Expressions...15
1.2.5 Functions... 15
1.2.6 Previewing Cards.. 16
1.2.7 Node Output Example..31
1.2.8 Element Output Example... 33
1.2.9 Assembly Output Example..34

1.3 Commands and Functions...36
1.3.1 Card Previewer Commands...36
1.3.2 Solver Template Commands... 55
1.3.3 Solver Template Functions..206

Index...290

8

Solver Templates 1

1 Solver Templates

Solver templates are ASCII data files containing HyperMesh Template Language Commands and
HyperMesh Template Language Functions.

This chapter covers the following:

• 1.1 Card Previewer (p. 10)

• 1.2 Creating Solver Templates (p. 12)

• 1.3 Commands and Functions (p. 36)

Export templates define the form of an ASCII output file and format the data in a HyperMesh database
for finite element codes. The template commands are organized in blocks which are output in the
order they are defined. Export templates also define card images for data in the HyperMesh database.
The HyperMesh Card Image panel is then used to review and edit the data. HyperMesh Card Preview
Commands are available for this purpose.

Export templates exist for each solver supported by HyperMesh and are located in sub-folders under the
<altair_home>/templates/feoutput directory. They are loaded when the user profile is changed or
from the Global panel.

Summary templates use the same commands and functions. However, instead of defining the format
of data and output files, they define how to summarize data in the database. Examples include a
component summary, mass calculations and load summaries. Summary templates are utilized in the
Summary panel.

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.10

1.1 Card Previewer
The HyperMesh Card Image panel is used to define solver specific data and review card information.
The format of the cards and the menus in the panel are defined in the export template, using
HyperMesh Card Preview Commands.

Export templates exist for each solver supported by HyperMesh and are located in subfolders under the
<altair_home>/templates/feoutput directory. They are loaded when the user profile is changed or
from the Global panel. A card image for each entity type is defined within the export template. Each
entity type can have its own associated card image with appropriate options.

A sample card image for an OptiStruct MAT1 material collector is shown below:

Figure 1:

For each item in the above card image, the export template contains HyperMesh Card Preview
Commands to define how the data is defined and reviewed in HyperMesh. A portion of the OptiStruct
export template for the above card image is shown here:

*beginmenu()
 *menustring("MAT1 ")
 *menufield(ID,integer,id,8)
 *menufield(E,real,$E,8)
 *menudefaultvalue(" ")
 *menuinitialvalue(210000.0)
 *menurestrictedvalue(>,0.0)
 *menufield(G,real,$G,8)
 *menudefaultvalue(" ")
 *menuinitialvalue(80769.2)
 *menurestrictedvalue(>,0.0)
 *menufield(NU,real,$Nu,8)
 *menudefaultvalue(" ")
 *menurestrictedvalue(>,-1.0)
 *menurestrictedvalue(<,0.5)
 *menuinitialvalue(0.3)
 *menufield(RHO,real,$Rho,8)
 *menudefaultvalue(" ")
 *menuinitialvalue(7.85e-09)
 *menufield(A,real,$MAT1_A,8)
 *menudefaultvalue(" ")
 *menufield(TREF,real,$MAT1_TREF,8)
 *menudefaultvalue(" ")
 *menufield(GE,real,$MAT1_GE,8)
 *menudefaultvalue(" ")
 *menulineend()

 *menustring(" ")
 *menufield(ST,real,$MAT1_ST,8)
 *menudefaultvalue(" ")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.11

 *menufield(SC,real,$MAT1_SC,8)
 *menudefaultvalue(" ")
 *menufield(SS,real,$MAT1_SS,8)
 *menudefaultvalue(" ")
 *menulineend()
*endmenu()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.12

1.2 Creating Solver Templates

1.2.1 Organization
A template file is organized into blocks and when outputting a database, HyperMesh processes a
template on a per-block basis. Blocks are output in the order that they are defined in the template file.

You define the beginning of a block with a scan command (*card, *component, *elements, and so on)
and then close the block with the *output() command.

As an entity is requested for output, HyperMesh reads the information from the database. Within each
block there are five independent levels that you can utilize when exporting information to the ASCII file
(coded numerically):

1. before() - At this level, you can define a series of commands that HyperMesh processes before
moving to the next level. The before() level is executed once for each data type requested. Use
this level to add comments and set up parameters on the following levels. Some of the data in the
database is available at this level.

2. beforecollector() - At this level, HyperMesh scans the database for the requested data type. Each
time HyperMesh finds the requested data type collector, it executes the beforecollector() level. Use
this level to add comments about the data and create groups. Collector data is available at this
level.

3. format() - At this level, HyperMesh processes the commands defined for each entity contained in a
collector. The data associated with the printed entity is available, and the format required for each
entity is defined at this level.

4. aftercollector() - After the data entities within a collector have been processed, HyperMesh goes
to the aftercollector() level. The aftercollector() level is processed after each collector is scanned.
Only the collector data is available at this level.

5. after() - The after() level is similar to the before() level. HyperMesh executes the after() level
once after HyperMesh scans the database.

The before() and after() blocks are executed even if none of the entities specified exist in the database.
Database information (except for global data) is only available on levels two through four.

Nodes
There ares several steps to output nodes.

1. HyperMesh executes the before() level.

2. HyperMesh executes the beforecollector() level using the only node collector in the database.

3. The format() level is executed once for each node in the database.

4. After processing the nodes, HyperMesh executes the aftercollector() level and the after() level.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.13

When outputting nodes, the before() and beforecollector() levels perform the same operation. The
after() and aftercollector() levels also perform the same operation. This is because there is no data
associated with the collector.

Named Entities
There ares several steps to output named entities.

1. HyperMesh executes the before() level followed by the beforecollector() level.

2. Since the HyperMesh database does not have a collector collector, the beforecollector() level is a
duplicate of the before() level and is immediately executed once.

3. HyperMesh executes the format() level for each of the named entities in the database. All of the
data is available.

4. The aftercollector() and after() levels are processed similarly to the before() and beforecollector()
levels in step 1.

Collected Entities
There ares several steps to output collected entities.

1. HyperMesh executes the before() level before scanning the database.

2. HyperMesh examines each collector for an entity that matches the requested type. When
HyperMesh finds a collector, the beforecollector() level is processed. Collector data is available at
this level.

3. HyperMesh executes the format() level once for each entity in the collector that matches the
requested type.

4. The aftercollector() and after() levels are processed similarly to the before() and beforecollector()
levels in step 1.

1.2.2 Data Entry and Access
Template files allow you to access information from the HyperMesh database with two methods, data
names and attributes.

Template files use data names to access information from the HyperMesh database. A data name is a
string that represents a piece of data. At output, HyperMesh replaces the data name string with the
value that the data name represents. For example, a node has id, x, y, z, and system as possible data
names in the template files. If you enter the command *field(integer,id,8) into a template file,
HyperMesh outputs the node ID in an integer format using eight spaces.

A data name can also represent a pointer to another entity in the database. In the element data
name list, the data name node1 is a pointer. node1 points to a node in the database. Using the
command *field(integer,node1,8), HyperMesh issues the error message "field statement
references a pointer". HyperMesh can’t output the correct value because node1 points to a node
entity that has many different possible values. To print the node ID, reference the pointer as
*field(integer,node1.id,8). A period separates the data name pointer node1 and the data name id.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.14

Template files additionally use attributes to describe solver-specific data. This data is created using
the HyperMesh card image system and may be attached to entities within the HyperMesh database.
Attributes are defined in the HyperMesh template system by giving them unique IDs for each solver.
This is done by giving each solver a number through the use of the template command *codename().
Each attribute can be accessed either through its unique ID or the name that the user gives the
attribute. Attributes are defined using the *defineattribute() command. An example for the
OptiStruct MAT1 material is:

*defineattribute(E,1,real,none)
*defineattribute(G,2,real,none)
*defineattribute(Nu,3,real,none)
*defineattribute(Rho,4,real,none)

The template files also allow for advanced features to be defined from within the template like counters,
tables and variables. This allows information to be passed from one function to another.

Comments can be added to the template using //. Add as many comments as needed to the template
file in order to describe what is being coded and to allow other developers to follow your logic.

1.2.3 Mathematical Expressions
Template files can also contain mathematical expressions.

For example, to translate a model during output, apply a formula to the x-coordinate of a node:

*nodes()
 *format()
 *string("node,")
 *field(integer,id,10)
 *string(",")
 *field(real,[x+100.0],10)
 *string(",")
 *field(real,y,10)
 *string(",")
 *field(real,z,10)
 *end()
*output()

100.0 is added to the x-coordinate of the nodes and is sent to the formatter, where it is written to the
file. The square brackets, [], around the formula tell the parser that the enclosed text is a formula and
not to interpret the asterisk, *, as a new command.

The following operators are available for mathematical expressions:

Addition +

Subtraction -

Multiplication *

Division /

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.15

Modulus %

1.2.4 Equalities, Inequalities and Logical Expressions
Templates contain functions to test values, perform conditional statement execution, or control the
template flow.

These statements include *if and *loopif. The tests in these commands use the following syntax to
determine if the statement is true or false.

These statements can be linked to logical expressions:

Equal to: ==

Not equal to: !=

Less than: <

Greater than: >

Less than or equal to: <=

Greater than or equal to: >=

Logical and: &&

Logical or: ||

1.2.5 Functions
The HyperMesh Template Functions are available to query information in the database, perform
mathematical functions, and query user-defined tables. A template function begins with the symbol
@ and is followed by the variable arguments in parentheses. Template functions are always placed
between square brackets [].

The following example finds the length of all weld elements and outputs that information to a file:

*elements(3,0,"","")
 *format()
 *field(integer,id,10)
 *string(" ")
 *field(real,[@magnitude(node1.x - node2.x,node1.y - node2.y,node1.z -
 node2.z)],10)
 *end()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.16

1.2.6 Previewing Cards
Card images are described by a template file block. You can display the card image using the card
previewer.

To display the card image using the card previewer, specify the appropriate card previewer commands
within a *beginmenu()/*endmenu() block. You can use these commands to display entity data and edit
solver-specific attributes.

Since the card previewer is used to view and edit attributes on multiple entities, some data may not
have a common value to display for the selected entities . When this occurs, a large X is drawn through
the data display area. If the data is an editable field (attribute), select the field and enter a value that is
common to all of the selected entities. If the entities do not share a common value, HyperMesh ignores
any logic commands (*menuif(), *menuoption(), *menuoptionenum(), and so on) dependent on
entities sharing a common value.

Error Messages
The following list describes the card previewer error messages and the corresponding solutions.

Message Invalid variable <variable> in *setvariable()
command.

Meaning The <variable> specified in the
*menusetvariable() command was not between
variable1 and variable20.

Solution Change the invalid variable to a valid variable
name.

Message Attribute id <id> on entity does not match type in
template.

Meaning The attribute's type did not match the type
specified for the attribute in the template.

Cause The *defineattribute() command in the
template may have been modified, a different
template with the same *codename() was used to
edit the entity, or an invalid entity was created by
an input translator.

Solution You must clear the attributes for the solver off of
the entity to edit the card.

Message Invalid entity type <type> specified in
*menuentitytype().

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.17

Meaning A *menuentitytype() command with invalid type
was present in the template file.

Solution Change the *menentitytype() command's
parameter to be a valid entity name.

Message Too many <type> collectors used.

Meaning A maximum of 48 *menuentitytype() commands
for the same entity type can be used in a card
image. You have exceeded this limit.

Solution Reduce the number of *menuentitytype()
commands for <type> to be less than 48.

Message Could not find entity <id> associated with
attribute <attribute name>

Meaning An entity attribute holds an id without an entity.

Cause Entities may have been deleted or renumbered, or
the *menuentitytype() command specifying the
entity collected by this attribute was changed in
the template file.

Solution None. The value is set to 0.

Message No attribute attached to menu item <name>.

Meaning An internal error has occurred while parsing an
expression.

Solution Contact HyperMesh support. The data and
template file are required to further investigate
the problem.

Message No attribute attached to collector item <id>.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.18

Meaning An internal error has occurred when a collector
was selected.

Solution Contact HyperMesh support. The data and
template file are required to further investigate
the problem.

Message Could not find attribute named <name> in
*menuoption(), skipping.

Meaning A *menuoption() or *menuoptionenum()
command referenced <name> that does not have
an *defineattribute() command.

Solution Change the *menuoption() or
*menuoptionenum() command to reference a valid
attribute name.

Message Could not find enumeration <enumeration> for
*menuoptionenum().

Meaning *menuoptionenum() command referenced an
<enumeration> that does not have an existing
*enumeration() command.

Solution Change the *menuoptionenum() command to
reference a valid enumeration.

Message Enumeration attribute <attribute> contains
value <value> beyond limit of <maximum>.

Meaning <attribute> holds a <value> > <maximum>.

Cause Both *menuoptionenum() and *menufield()
commands referencing <attribute> may exist
in the template file. If this is the case, the user
can type in <value> > <maximum>. An input
translator may have also created <attribute>
with the invalid <value>.

Solution If this occurs in a HyperMesh-developed template,
contact HyperMesh support with the error. User

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.19

generated templates can ensure that the value
is within a certain range by using *menuif() and
*menuattributeset() commands. Here is an
example of how to limit an attribute's value to
between 1 and 5.

*menuif([$ATTRIBUTE_NAME < 1])
*menuattributeset($ATTRIBUTE_NAME,1)
*menuendif()
*menuif([$ATTRIBUTE_NAME > 5])
*menuattributeset($ATTRIBUTE_NAME,5)
*menuendif()

Message Could not find attribute named <attribute>,
skipping.

Meaning A *menufield() command referenced the
attribute named <attribute> for which no
*defineattribute() command exists.

Solution Change the *menufield() command to reference
a valid attribute name.

Message Default value specified for always on attribute
<attribute>.

Meaning A *menudefaultvalue() command modifies
<attribute> that does not have a valid on/off
value. The *menudefaultvalue() command will
be ignored.

Cause The *menudefaultvalue() command in the
template may have been added after the template
was used on the current database, a different
template with the same *codename() was used to
edit the entity, or <attribute> was created with
an invalid status by an input translator.

Message Failed to created attribute <attribute>.

Meaning An internal error has occurred in the card editor.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.20

Solution Contact HyperMesh support. The data and
template file are required to further investigate
the problem.

Message Initial value expression for <attribute> could
not be evaluated.

Meaning The expression specified in *menuinitialvalue()
returned an error code. The <attribute> is
created with the value 0 or a zero length string,
depending on string.

Cause This error should only occur if you using the card
editor on multiple entities.

Solution If you need the *menuinitialvalue() command
to be executed, abort the editing on the current
set of entities and edit them one at a time.

Message Initial value for <attribute> only valid for
integer, real, or string.

Meaning A *menuinitialvalue() command references
an attribute that was not of type integer, real, or
string.

Solution Remove the *menuinitialvalue() command that
references <attribute>.

Message Attribute <attribute> has different entity type
(<entity>) than template.

Meaning A *menuentitytype() command conflicts with the
entity type stored on <attribute>.

Cause The *menuentitytype() command modifying
<attribute> in the template may have been
changed after the template was used on the
current database, two or more *menufield()
commands referencing <attribute> with
differing *menuentitytype() commands exists
in the template file, a different template with the

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.21

same *codename() was used to edit the entity, or
<attribute> was created with an invalid entity
type by an input translator.

Solution If a user-generated input translator is being
used, make sure that attribute's entity type
created by the translator matches that of the
template file. Also check for and remove multiple
*menufield()/*menuentitytype() commands
referencing the same attribute in the block.

Message Failed to created entity attribute <attribute>.

Meaning An internal error has occurred in the card editor.

Solution Contact HyperMesh support. The data and
template file are required to further investigate
the problem.

Message Enumerated and legal input specified for
<attribute>, legal ignored.

Meaning Both *menulegalvalue() and *menuenum()
commands modify the same *menufield()
command. The *menulegalvalue() commands
are ignored.

Solution Remove either the *menuenum() command or all
of the *menulegalvalue() modifiers from the
*menufield() in question.

Message Enumerated and restricted input specified for
<attribute>, restricted ignored.

Meaning Both *menurestrictedvalue() and *menuenum()
commands modify the same *menufield()
command. The *menurestrictedvalue()
commands are ignored.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.22

Solution Remove either the *menuenum() command or all
*menurestrictedvalue() modifiers from the
*menufield() in question.

Message Restricted and legal input specified for
<attribute>, restricted ignored.

Meaning Both *menurestrictedvalue() and
*menulegalvalue() commands modify
the same *menufield() command. The
*menurestrictedvalue() commands are ignored.

Solution Remove either all *menulegalvalue() commands
or all *menurestrictedvalue() modifiers from
the *menufield() in question.

Message menulegalvalue unsupported for storage type of
<attribute>.

Meaning A *menulegalvalue() command modifies a
*menufield() command that references an
attribute that is not of type real, integer, or string.

Solution Remove the *menulegalvalue() modifier from the
*menufield() command.

Message Illegal unsigned integer value returned for
<data>.

Meaning An expression or data member value could not
be displayed as an unsigned integer. The string
"ERROR" is displayed in red for this field.

Solution Change the display type of this *menufield()
command to real or exponential.

Message Illegal integer value returned for <data>.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.23

Meaning An expression or data member value could not
be displayed as an integer. The string "ERROR" is
displayed in red for this field.

Solution Change the display type of this *menufield()
command to real or exponential.

Message Illegal hexadecimal value returned for <data>.

Meaning An expression or data member value could not be
displayed as a hexadecimal number. The string
"ERROR" is displayed in red for this field.

Solution Change the display type of this *menufield()
command to real or exponential.

Message No string data returned for <data>.

Meaning An expression or data member value could not
be displayed as a string. The string "ERROR" is
displayed in red for this field.

Solution Change the display type of this *menufield()
command to something other than string.

Message beginrepeat - Expression <expression> could not
be evaluated, skipping repeat block.

Meaning <expression> could not be evaluated for multiple
entities.

Solution Reduce set of entities to use card editor until
<expression> is resolvable.

Message Illegal repeat value return for <expression>.

Meaning A *beginrepeat() or *beginrepeat2d()
command containing <expression> returned a

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.24

value too large or too small. The repeat block is
skipped.

Solution It is possible to get this error with valid data.
Usually it is caused by a bad *menupointerset()
command.

Message Illegal repeat 2d value return for <expression>.

Meaning A *beginrepeat() or *beginrepeat2d()
command containing <expression> returned a
value too large or too small. The repeat block is
skipped.

Solution It is possible to get this error with valid data.
Usually it is caused by a bad *menupointerset()
command.

Message Invalid pointer name <pointer> in
*menupointerset() command, ignoring.

Meaning The <pointer> specified in the
*menupointerset() command was not between
pointer1 and pointer20.

Solution Change the invalid pointer to a valid pointer name.

Message Invalid counter name <counter> in
*menucounterset() command, ignoring.

Meaning The <counter> specified in the
*menucounterset() command was not between
pointer1 and pointer20.

Solution Change the invalid pointer to a valid counter
name.

Message Error evaluating data for <counter>, setting to 0.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.25

Meaning The expression in a *menucounterset() command
could not be evaluated for this set of entities.

Solution Reduce the set of entities you are editing until the
expression in *menucounterset() command can
be evaluated.

Message Invalid variable name <variable> in
*menuvariableset() command, ignoring.

Meaning The <variable> specified in the
*menuvariableset() command was not between
variable1 and variable20.

Solution Change the invalid variable to a valid variable
name.

Message Error evaluating data for <variable>, setting to
0.

Meaning The expression in a *menuvariableset()
command could not be evaluated for this set of
entities.

Solution Abort editing the current set of entities, reduce
the set of entities you are editing until the
expression in *menuvariableset() command is
evaluated.

Message Unable to find attribute <attribute> in
*menuattributeset() command.

Meaning A *menuattributeset() command references an
illegal attribute name.

Solution Change the attribute referenced by the
*menuattributeset() command.

Message Could not find selected item <id>.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.26

Meaning An internal error has occurred in the card editor.

Solution Contact HyperMesh support. The current
model and template file are required to further
investigate the problem.

Message Could not find tag attribute <attribute>.

Meaning A *cardmenuitem() command references an
attribute that has no *defineattribute()
command.

Solution Change <attribute> so that it references a valid
attribute, or add a *defineattribute() command
for <attribute>.

Message menuenum references undefined enumeration
<name>.

Meaning An enumeration called <name> was not previously
defined in the template file.

Solution Change <name> to match a valid enumeration
name.

Message Output command reached before *beginmenu()
for this entity.

Meaning The *output() command for this entity block,
signifying the end of the block, was reached
before a *beginmenu() command. Either the
*beginmenu() does not exist in this entity block,
or it was placed after the *output() command.

Solution Add or move the *beginmenu()/*endmenu()
section before the *format() command for this
block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.27

Message 2d array attribute <attribute> found outside of
*repeat2d block().

Meaning Attributes of type arrayofreal2d and
arrayofinteger2d can only be referenced in a
*beginrepeat2d()/*endrepeat2d() section.

Solution Move the reference to <attribute> into a
*beginrepeat2d()/ *endrepeat2d() section.

Message 2d array attribute <attribute> not resized
properly (out of bounds).

Meaning An internal error has occurred in the card editor
causing the array attribute to have the wrong size.

Solution Contact HyperMesh support. The data and
template file are required to further investigate
the problem.

Message Unknown attribute type <type number> found in
attribute table.

Meaning An internal error has occurred in the card editor
causing the array attribute to have the wrong size.

Solution Contact HyperMesh support. The data and
template file are required to further investigate
the problem.

Message *endmenu() command not reached for this entity.

Meaning The end of the template file was reached before
the *endmenu() command.

Solution Add a *endmenu() command to match the last
*beginmenu() command in template file.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.28

Message *menuif() missing menuelse()/menuendif()
command, aborting.

Meaning The end of the template file was reached before
a *menuelse() or *menuendif() command for a
*menuif() statement.

Solution Add a *menuendif() command to match the
*menuif() command. Since the *menuif()
commands can be nested, it may not be obvious
which *menuif() is missing a *menuelse() or
*menuendif() command.

Message *menuendif() command not found to terminate
*menuelse() block.

Meaning The end of the template file was reached before a
*menuendif() command was found to terminate a
*menuif() and *menuelse() statement.

Solution Add a *menuendif() command to match the
*menuif() command. Since the *menuif()
commands can be nested, it may not be obvious
which *menuif() is missing a *menuelse() or
*menuendif() command.

Message Menu does not own pointer returned by strrgy.

Meaning An internal error has occurred in the card editor.

Solution Contact HyperMesh support. The data and
template file are required to further investigate
the problem.

Message Option attribute <attribute> not of type integer.

Meaning <attribute> referenced in a *menuoption() or
*menuoptionenum() command was not an integer
attribute.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.29

Solution Changed the *menuoption() or
*menuoptionenum() command so that it
references an integer attribute.

Message Negative optioncount reached in case search
block, aborting.

Meaning Too many *menuoptionend() commands
exist in this block. There should be one
*menuoptionend() command per *menuoption()
or *menuoptionenum() command.

Solution Locate and remove the extra *menuoptionend()
commands.

Message Invalid attribute <attribute> referenced in
*beginrepeat() command.

Meaning The name <attribute> does not match a name
in a *defineattribute() command.

Solution Change <attribute> to match the name of a
valid attribute.

Message *beginrepeat() attribute <attribute> is not
type integer.

Meaning Attributes specified in the *beginrepeat()
command must be of type integer.

Solution Change the *beginrepeat() command to
reference an integer attribute.

Message No *endrepeat() for zero length array.

Meaning The end of the template file was reached before
a *endrepeat() command was found to match a
*beginrepeat().

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.30

Solution Add a *endrepeat() command to match the
*beginrepeat() command.

Message *endrepeat() found without matching
*beginrepeat().

Meaning An extra *endrepeat() command exists in
this block. There should be one *endrepeat()
command per *beginrepeat() command.

Solution Locate and remove the extra *endrepeat()
command.

Message *beginrepeat2d() found outside of
*beingrepeat() block.

Meaning All *beginrepeat2d() commands must occur
within a *beginrepeat()/*endrepeat() block.

Solution Move the *beginrepeat2d()/*endrepeat2d()
block so that it occurs in a *beginrepeat()/
*endrepeat() block.

Message Invalid attribute <attribute> referenced in
*beginrepeat2d() command.

Meaning The name <attribute> does not match a name
in a *defineattribute() command.

Solution Change <attribute> to match the name of a
valid attribute.

Message *beginrepeat2d() attribute <attribute> is not
type integer.

Meaning Attributes specified in the *beginrepeat2d()
command must be of type integer.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.31

Solution Change the *beginrepeat2d() command to
reference an integer attribute.

Message No *endrepeat() for zero length array.

Meaning The end of the template file was reached before
a *endrepeat() command was found to match a
*beginrepeat().

Solution Add an *endrepeat() command to match the
*beginrepeat() command.

Message *endrepeat2d() found without matching
*beginrepeat2d().

Meaning An extra *endrepeat2d() command exists in
this block. There should be one *endrepeat2d()
command per *beginrepeat2d() command.

Solution Locate and remove the extra *endrepeat2d()
command.

1.2.7 Node Output Example
This example demonstrates how to use template files to generate output files for nodes.

Assume that a particular analysis code requires the nodes in the data deck to appear in the following
format:

1 8 16 24 32 40
NODE DATA
NODE <id> <x> <y> <z>*
.
.
.
END NODES

The following template generates the necessary output:

*text()
 *string("1 8 16 24 32 40")
 *end()
*output()

*nodes()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.32

 *before()
 *string("NODE DATA")
 *end()
 *format()
 *string("NODE ")
 *field(integer,id,8)
 *field(real,x,8)
 *field(real,y,8)
 *field(real,z,8)
 string("")
 *end()
 *after()
 *string("END NODES")
 *end()
*output()

The *text() command indicates the beginning of a simple text block that does not require database
access.

The *nodes() command indicates the beginning of a node block. The following commands format all
node entities in the HyperMesh database. The next command, *before(), instructs HyperMesh to
execute the following commands on the before() level. *string() and *end() instruct HyperMesh
to output the string contained in double quotes and perform a carriage return, respectively. The
next command informs HyperMesh to execute the following commands on the format() level, or with
each of the entities (nodes in this case). *string() instructs HyperMesh to place the item in double
quotes in the output file. The extra spaces after the word NODE allow you to define a width, since the
*string() command does not allow width definition. The next command is the first data request from
the database.

The *field() command is how template files communicate with the HyperMesh database. The
*field() command instructs HyperMesh to scan the database and retrieve the next piece of
information for the output file. *field() takes three parameters: the output type, the name of the
data accessed, and the width of the generated field. The output type can be integer, real, exponential,
string, or hexadecimal. In this case, the data type is an integer. The next parameter is the data name.
ID indicates that HyperMesh places the value of the node ID into this field. The last parameter is the
width of the field. In this example, all fields are formatted to eight characters. The next three *field()
commands place x, y, and z into the output file formatted as reals. *string() places the trailing
asterisk on the end of the line. The *end() command (carriage return) is the last command placed into
the format() level.

The *after() command indicates the last process level. This command instructs HyperMesh to execute
the following commands on the after() level. The *string() command places the string contained in
double quotes in the output file and the *end() command terminates the current line.

The *output() command processes the node entity output requests made in the preceding block. If the
*output() command is missing, HyperMesh does not print anything to the file.

In addition to this example, the default HyperMesh templates serve as examples.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.33

1.2.8 Element Output Example
This example demonstrates how to use template files to generate output files for elements.

Assume that a particular analysis code requires the elements in the data deck to appear in the following
format:

1 10 20 30 40 50
BEGIN ELEMENT DATA
 ELEMENTS GROUP = <name>
 <id> <node1> <node2> <node3> <node4>
 .
 .
 .
 END
.
.
.
END ELEMENTS

This example assumes that the analysis code requires grouped element output, where elements
with the same property are placed into the same output element group, regardless of component
organization.

The following template generates the necessary output:

*text()
 *string("1 10 20 30 40 50") *end()
*output()

*elements(104,1,"quads","property")
 *before()
 *string("BEGIN ELEMENT DATA") *end()
 *beforecollector()
 *string(" ELEMENTS GROUP = ") *field(string,collector.name,10) *end()
 *format()
 *field(integer,id,10) *field(integer,node1.id,10)
 *field(integer,node2.id,10)*field(integer,node3.id,10)
 *field(integer,node4.id,10) *end()
 *aftercollector()
 *string(" END") *end()
 *after()
 *string("END ELEMENTS") *end()
*output()

Note the placement of the *() commands. HyperMesh does not place restrictions on where the
commands appear in the file, so you can format the template as necessary. Comments can also be
added for documentation purposes. HyperMesh ignores file content until it finds an asterisk, *. A
command is defined as the characters between the asterisk and the closing parenthesis,).

The *elements() command instructs HyperMesh that the following commands define an element
output block or process. The parameters to the *elements() command are the configuration and type
of element the output block applies to: a user-defined name for the elements, and a user-defined
name for the property the elements require. Element configurations are listed in the following sections
for each of the HyperMesh elements. Element types are a user-defined number associated with each
HyperMesh element (defaults to 1). Changing the type allows multiple definitions for a HyperMesh
element configuration. A quad is configuration 104 and type 1. When these parameters are supplied,

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.34

HyperMesh limits the output of this process to quad elements. The next series of commands, *before()
, *string(), and *end() behave as described in the node example.

The *beforecollector() command instructs HyperMesh to process the following commands on
the beforecollector() level. When the beforecollector() level is selected, HyperMesh processes the
commands each time it finds a collector holding the required type of information in the database. In this
case, *string(), *field(), and *end() are the commands HyperMesh processes when a component is
found. On the *field() command, the data name is collector.name.

*format() describes the process for each element of configuration 104 and type 1. The format
commands use the data name node1.id, node2.id, and so on. The period, ., is required because node1
is a pointer to a node. node1.id is the ID of the node.

In addition to this example, the default HyperMesh templates serve as examples.

1.2.9 Assembly Output Example
This example demonstrates how to use template files to generate output files for assemblies.

*assemblies()
 *format()
 *string("ASSEMBLY: ")
 *field(integer,id,0)
 *string(" ")
 *field(quotedstring,name,0)
 *end()

 *counterset(counter1,0)
 *loopif([counter1 != numberofcomponents])
 *pointerset(pointer1,components,counter1)
 *string(" COMPONENT: ")
 *field(integer,pointer1.pointervalue,0)
 *string(" ")
 *field(quotedstring,pointer1.component.name,0)
 *end()
 *counterinc(counter1)
 *endloop()

 *counterset(counter1,0)
 *loopif([counter1 != numberofassemblies])
 *pointerset(pointer1,assemblies,counter1)
 *string(" SUBASSEMBLY: ")
 *field(integer,pointer1.pointervalue,0)
 *string(" ")
 *field(quotedstring,pointer1.assembly.name,0)
 *end()
 *counterinc(counter1)
 *endloop()

 *counterset(counter1,0)
 *loopif([counter1 != numberofmultibodies])
 *pointerset(pointer1,multibodies,counter1)
 *string(" MULTIBODY: ")
 *field(integer,pointer1.pointervalue,0)
 *string(" ")
 *field(quotedstring,pointer1.multibody.name,0)
 *end()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.35

 *counterinc(counter1)
 *endloop()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.36

1.3 Commands and Functions

1.3.1 Card Previewer Commands

*begincardmenu()
Indicates the beginning of the Control Cards list.

Syntax
*begincardmenu ()

Type
HyperMesh Card Previewer Command

Example
Only *cardmenuitem() commands are valid between the *begincardmenu() and *endcardmenu()
commands.

*beginmenu()
Indicates the beginning of the description used for the card previewer.

Syntax
*beginmenu ()

Type
HyperMesh Card Previewer Command

Example
Must be accompanied by the *endmenu() command.

*beginrepeat()
Repeats execution of a block of code a specified number of times.

Syntax
*beginrepeat (expression)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.37

Type
HyperMesh Card Previewer Command

Inputs
expression

A relational expression or an attribute.

Example

*beginrepeat($ARRAY_LENGTH)
 *repeatwrap(80)
 *repeatcounter(1)
 *menufield(Array,integer,$ARRAY_ATTRIBUTE,10)
*endrepeat()

The *repeatwrap() command can be used to automatically begin new lines. If used, it must be the first
command following the *beginrepeat().

The *repeatcounter() command can be used to store the current repeat value in a counter. If no
*repeatcounter() command is specified, the repeat value is not stored in any counter.

All *menufield() commands that reference attributes can only reference the following types in a
*beginrepeat() block: arrayofinteger, arrayofreal, arrayofstring.

The *beginrepeat() command must be accompanied by a *endrepeat() command.

*beginrepeat2d()
Repeats execution of a block of code a specified number of times.

Syntax
*beginrepeat2d (expression)

Type
HyperMesh Card Previewer Command

Inputs
expression

Either a relational expression or an attribute.

Example

*beginrepeat($ARRAY_LENGTH)
*repeatwrap(80)
*repeatcounter(1)
*menufield(Array,integer,$ARRAY_ATTRIBUTE,10)
 *beginrepeat2d($ARRAY2D_LENGTH)
 *repeatcounter(2)
 *menufield(Array2d,integer,$ARRAY2D_ATTRIBUTE,10)
 *endrepeat2d()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.38

*endrepeat()

The *beginrepeat2d() command must always occur with a *beginrepeat() /*endrepeat() block.

The *repeatwrap() command can be used to automatically begin new lines. If used, it must be the
first command following the *beginrepeat2d(). If a *repeatwrap() command is specified following a
*beginrepeat() command, that same value is used for the *beginrepeat2d() block.

The *repeatcounter() command can be used to store the current repeat value in a counter. If no
*repeatcounter() command is specified, the repeat value is not stored in any counter.

All *menufield() commands that reference attributes can only reference the following types in a
*beginrepeat2d() block: arrayofinteger2d or arrayofreal2d.

The *beginrepeat2d() command must be accompanied by a *endrepeat2d() command.

 *cardmenuitem()
Specifies the name and tag attribute for a Control Card.

Syntax
*cardmenuitem (button text, attribute name)

Type
HyperMesh Card Previewer Command

Inputs
button text

The text that is displayed to you in the Control Cards menu. Should be less than 60 characters in
length.

attribute name
The tag attribute for a Control Card entity. This must have an accompanying *card(attribute
name) block in the template file.

Example
The *cardmenuitem() commands specify the list that appears in the Control Cards menu. If the list is
too large to display, Prev/Next and First/Last buttons are added to the menu so you can page through
all options.

The Control Card buttons are displayed with different colors, depending on their status and their
existence in the database. Items with gray text do not exist in the database. Items with red text exist in
the database, but are inactive and are not written to a file when exporting data. Items with green text
exist in the database and are active; and are output when exporting data. Only one instance of each
type of Control Card can exist in the database.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.39

*endcardmenu()
Indicates the end of the Control Cards list.

Syntax
*endcardmenu ()

Type
HyperMesh Card Previewer Command

*endmenu()
Indicates the ending of the description used for the card previewer.

Syntax
*endmenu ()

Type
HyperMesh Card Previewer Command

Example
Must be accompanied by the *beginmenu() command.

*endrepeat()
Terminates the code block to be executed by *beginrepeat().

Syntax
*endrepeat ()

Type
HyperMesh Card Previewer Command

*endrepeat2d()
Terminates the code block to be executed by *beginrepeat2d().

Syntax
*endrepeat2d ()

Type
HyperMesh Card Previewer Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.40

*enumeration()
Creates an enumeration.

Syntax
*enumeration (enum name, str1, str2,...)

Type
HyperMesh Card Previewer Command

Inputs
enum name

The name of the enumeration.

str1, str2
The members of the enumeration.

 *globaldefaults()
Used to specify that each real, integer, and string attribute is modified as per the
*menudefaultvalue().

Syntax
*globaldefaults ()

Type
HyperMesh Card Previewer Command

Example
Any default value not overridden by a *menudefaultvalue() fills the field with the number of blanks
equal to the width parameter in the *menufield() command when the field has the status off.
*menudefaultvalue() can still be used to specify a different default value for individual fields when
needed.

*menuattributecreate()
Initializes an attribute to a specified value upon creation of an entity.

Syntax
*menuattributecreate (attribute, expression)

Type
HyperMesh Card Previewer Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.41

Inputs
attribute

The name of the attribute to hold the value.

expression
An expression defining the value.

Example
*menuattributecreate()can only be used for integer, real, entity, or string attributes.

*menuattributeset()
Sets the value of attribute.

Syntax
*menuattributeset (attribute, expression)

Type
HyperMesh Card Previewer Command

Inputs
attribute

The name of the attribute to hold the value.

expression
An expression defining the value.

Example
*menuattributeset() can only be used for integer, real, entity, or string attributes.

*menucase()
The *menucase() command specifies a block of card image template commands that are executed
when an attribute has the value matching the *menucase() command.

Syntax
*menucase (value)

Type
HyperMesh Card Previewer Command

Inputs
value

Must be an integer value.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.42

Example
*menucase() commands must occur in consecutive, incremental order.

The values 0 and 1 are the only legal values for a *menuoption() command.

The values 1 to N are legal for a *menuoptionenum() command where N is the number of values in the
enumeration referenced by *menuoptionenum().

*menucounterset()
Sets the value of the local counter.

Syntax
*menucounterset (counter, value)

Type
HyperMesh Card Previewer Command

Inputs
counter

Value from counter1 to counter20 indicating which of the 20 possible counters should be set to
the value parameter.

value
Value of the counter.

Example
Unlike the *counterset() command that sets a global value for the entire output section of the
template, the *menucounterset() command's value is only for the local scope of an entity as specified
by the *beginmenu() and *endmenu() commands.

*menudefaultvalue()
Modifies an attribute field so that it has an on/off status.

Syntax
*menudefaultvalue (string)

Type
HyperMesh Card Previewer Command

Inputs
string

The text that is displayed when the status of the attribute is off.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.43

Example

*menufield("MISC",integer,$INT_ATTRIBUTE,10)
*menudefaultvalue("XXXXXXXXXX")
*menufield("MISC 2",real,$REAL_ATTRIBUTE,8)
*menudefaultvalue("no value")

string should be equal in length to the width in the *menufield() command.

This command must follow a *menufield() command that references an integer, real, or string
attribute. If multiple entities are being displayed in the card previewer and the status of any attribute
on different entities conflict, the title is displayed in red and the value for this attribute is displayed as a
large X. The title must be selected to make all entities have the same status for this attribute, which is
off. The title for the field can be selected to change the on/off status for the attribute.

If the attribute is off, the title is displayed in yellow and the string specified in the
*menudefaultvalue() command is displayed. If the attribute is on, the title is displayed in cyan and an
input field is displayed. When the attribute is on, you can select the input field and type in a value for
this *menufield().

An attribute's status can be accessed in the output section of the template file using the
@defaultstatus() command.

*menuelse()
Used to define the false block of a *menuif() statement.

Syntax
*menuelse ()

Type
HyperMesh Card Previewer Command

*menuendif()
Used to define the end of an *menuif() block.

Syntax
*menuendif ()

Type
HyperMesh Card Previewer Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.44

*menuentitysubtype()
Modifies an attribute field so that the contents of the selection must be of the specified entity type in
the HyperMesh database.

Syntax
*menuentitysubtype (entity_type)

Type
HyperMesh Card Previewer Command

Inputs
entity_type

Example
entity_type must be a valid HyperMesh entity type.

This command can only be used following the sequence of one *menufield and one *menuentitytype
command. It will only be effective if the argument to the preceding *menuentitytype is SETS, TITLES,
OUTPUTBLOCKS, or TAGS; otherwise it will be ignored. The command may be used more than once.
The following fragment is valid:

*menufield($description,integer,$name,$width)
 *menuentitytype(sets)
 *menuentitysubtype(elems)
 *menuentitysubtype(nodes)
 *menuentitysubtype(comps)

*menuentitysubtype indicates that only sets, titles, and so on that contain entities of the given
type may be selected for this field in the card previewer. In the preceding example, you may select
sets that contain elements, nodes or components only. If *menuentitysubtype does not follow
*menuentitytype, it is assumed that all types are allowed. Multiple instances of *menuentitysubtype
allow multiple subtypes.

*menuentitytype()
Modifies an attribute field so that the selection must be an ID of an entity of a specified type in the
HyperMesh database.

Syntax
*menuentitytype (entity_type)

Type
HyperMesh Card Previewer Command

Inputs
entity_type

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.45

Example
entity_type must be a valid HyperMesh entity type.

The *menuentitytype() command cannot modify a *menufield() along with a *menuenum(), a
*menurestrictedvalue() , a *menulegalvalue() , or a *menudefaultvalue() command.

This command follows a *menufield() command that references an entity attribute. This changes the
appearance of the field in the card previewer to a collector of the specified type.

*menuenum()
Modifies an attribute field so that its value is displayed as and restricted to an enumeration's values.

Syntax
*menuenum (enumeration)

Type
HyperMesh Card Previewer Command

Inputs
enumeration

The name of a previously defined enumeration. Instead of an input field, the field appears as a
button. When selected, the enumeration's values are displayed in a pop-up. After selected, the
position of the value in the enumeration is stored in the attribute (1 to N).

Example
The *menuenum() command can only be used to modify integer attributes.

The *menuenum() command cannot modify a *menufield() along with a *menuentitytype() , a
*menurestrictedvalue() , a *menulegalvalue() , or a *menudefaultvalue() command.

*menufield()
Places a formatted value from the database into the card image.

Syntax
*menufield (description, type, data name, width)

Type
HyperMesh Card Previewer Command

Inputs
description

A string that is displayed along with the value. The length of the string should not be longer than
width.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.46

type
Either integer, unsigned, real, exponential, string, or hexadecimal.

data name
The name of the data to be accessed.

width
The width of the formatted field. In the case of real, HyperMesh uses scientific notation in order to
make the value displayed fit in the specified number of characters.

*menuif()
Used to conditionally execute branches in the card image.

Syntax
*menuif (expression)

Type
HyperMesh Card Previewer Command

Inputs
expression

A relational expression.

Example
Requires an *menuendif() command.

The expression is required to be enclosed in square brackets.

The following operators are available:

==, = equal

!= not equal

<= less than or equal

< less than

>= greater than or equal

> greater than

If multiple entities are being displayed and an *menuif() returns conflicting results for the expression,
the entire *menuif()/ *menuelse() / *menuendif() block is skipped.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.47

*menuinitialarrayvalue()
Sets the initial values of an attribute.

Syntax
*menuinitialarrayvalue (value)

Type
HyperMesh Card Previewer Command

Inputs
value

Can be an expression for a real or integer attribute, or a string for string attributes.

Example
This command works only for attributes declared as arrayofints, arrayofreals, or arrayofstrings. Initially,
all values in the array are set to the specified value. After the initial values are set, whenever the array
size is increased, all new items in the array are set to the new value.

*menuinitialvalue()
Sets the initial value of an attribute if the attribute does not currently exist on the entity.

Syntax
*menuinitialvalue (value)

Type
HyperMesh Card Previewer Command

Inputs
value

Can be an expression for real or integer attributes, or a string for string attributes.

Example
May be combined with *menulegalvalue(), *menuenum() or *menurestrictedvalue() modifiers. If the
attribute already exists on the entity, its value is not changed by the command. This command must
follow a *menufield() command that references an integer, real, or string attribute.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.48

*menulegalvalue()
Modifies an attribute field so that a selection must be made from a list.

Syntax
*menulegalvalue (string)

Type
HyperMesh Card Previewer Command

Inputs
string

The string that is added to the list you can select from for this *menufield(). The length of string
in characters should be less than or equal to the width specified in the *menufield() command.

Example
Below is an example of the *menulegalvalue() command modifying each of the three attribute types:

*menufield("INT FIELD",integer,$INT_ATTRIBUTE,10)
*menulegalvalue(1)
*menulegalvalue(2)
*menulegalvalue(4)
*menulegalvalue(8)
*menufield("REAL FIELD",real,$REAL_ATTRIBUTE,10)
*menulegalvalue(1.1)
*menulegalvalue(1.2)
*menulegalvalue(3.0)
*menufield("STRING FIELD",string,$STRING_ATTRIBUTE,10)
*menulegalvalue("String 1")
*menulegalvalue("String 2")
*menulegalvalue("Last String")

If the *menufield() attribute is of type integer, the string specified in the *menulegalvalue()
command is converted to an integer and stored in the attribute.

If the *menufield() attribute is of type real, the string specified in the *menulegalvalue() command
is converted to a real number and stored in the attribute.

If the *menufield() attribute is of type string, the string specified in the *menulegalvalue()
command is copied to the attribute.

The *menulegalvalue() cannot modify a *menufield() along with a *menuenum()command or a
*menurestrictedvalue() command.

Multiple *menulegalvalue() commands may be applied to the same *menufield() command.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.49

*menulineend()
Ends the current line in the card image.

Syntax
*menulineend

()

Type
HyperMesh Card Previewer Command

Description
Card images always require at least 1 *menulineend() command. The next command that displays a
field displays it in column 1 on the next line.

*menuoption()
Specifies that the value of an attribute can only be 0 or 1.

Syntax
*menuoption (attribute)

Type
HyperMesh Card Previewer Command

Inputs
attribute

The name of the integer attribute that holds the value. The value stored in attribute is either 0
(off) or 1 (on).

Example

*menuoption($Option_Attribute)
*menucase(0)
*menustring("Option is off")
*menucase(1)
*menustring("Option is on")
*menuoptionend()

You must have a *menucase() for both values, 0 and 1. All of the commands between the
*menucase() statement that are equal to the value stored in attribute and the next *menucase() or
*menuoptionend() statement are executed.

The attribute's value is displayed in the options (bottom) portion of the menu as a diamond toggle.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.50

*menuoptionend()
Terminates a *menuoption() or *menuoptionenum() command.

Syntax
*menuoptionend ()

Type
HyperMesh Card Previewer Command

*menuoptionenum()
Specifies that the value of an attribute is defined by a previously defined *enumeration() command.

Syntax
*menuoptionenum (attribute, enumeration)

Type
HyperMesh Card Previewer Command

Inputs
attribute

The name of the integer attribute that holds the value.

enumeration
The name of a previously defined enumeration. The value stored in attribute is converted to an
integer based on the selection's place in the enumeration and has a value from one to N (where N
is the number of items in the enumeration).

Example

*enumeration(Numbers,One,Two,Three)
*menuoptionenum($Numbers_Attribute,Numbers)
*menucase(1)
*menustring("One (1)")
*menucase(2)
*menustring("Two (2)")
*menucase(3)
*menustring("Three (3)")
*menuoptionend()

For each value specified in the *enumeration() statement that enumeration references, you must have
a *menucase() statement. All of the commands between the *menucase()statement that are equal to
the value stored in attribute and the next *menucase() or *menuoptionend()statement are executed.

The attribute's value is displayed in the options (bottom) portion of the menu as a selector. You can
choose from the values in the enumeration.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.51

*menupointerset()
Sets the initial value of a pointer.

Syntax
*menupointerset (pointer number, pointer, value)

Type
HyperMesh Card Previewer Command

Inputs
pointer number

A value from pointer1 to pointer20 indicating which of the 20 possible pointers should be set to
the value parameter.

pointer
The pointer to the data object to be accessed. Only certain data types may user pointers. These
are described in the template commands where they are valid.

value
The value of the counter.

Example
For example, to display all the dependent node IDs on a rigid link element, the following commands
could be used while in a rigid link card description:

*beginrepeat(dependentnodesmax)
 *repeatcounter(1)
 *menupointerset(pointer1,dependentnodes,[counter1 - 1])
 *menufield(dnod,integer,pointer1.pointervalue,8)
*endrepeat()

Unlike the *pointerset() command that sets a global value for the entire output section of the
template, the *menupointerset() command's value is only for the local scope of an entity as specified
by the *beginmenu()and *endmenu() commands.

*menurestrictedvalue()
Modifies an attribute field so that it alerts you when a value is outside of a specified range.

Syntax
*menurestrictedvalue (restriction, value)

Type
HyperMesh Card Previewer Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.52

Inputs
restriction

Must be one of the following: >, >=, <=, or <.

value
The value that is used for comparison with the value that you entered.

Example
The following is an example on how to restrict a real attribute to values > 0.0 and <= 1.0:

*menufield("MISC",real,$REAL_ATTRIBUTE,10)
*menurestrictedvalue(>,0.0)
*menurestrictedvalue(<=,1.0)

*menurestrictedvalue() cannot modify a *menufield() along with a *menuenum() or a
*menulegalvalue() command.

This command must follow a *menufield() command that references an integer or real attribute. If you
specify a value outside of the range specified by the *menurestrictedvalue() value, an error message
is displayed and the value is displayed in red. Multiple *menurestrictedvalue() commands may be
applied to the same *menufield() command, but if restricted to the same boundary, only the last one
is used.

*menustring()
Displays a string in the card image.

Syntax
*menustring (string)

Type
HyperMesh Card Previewer Command

Inputs
string

A string of characters. If the string contains a space, an asterisk, or a comma, the string must be
enclosed by double quotes.

*menuvariableset()
Sets a variable to a specific value.

Syntax
*menuvariableset (variable, value)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.53

Type
HyperMesh Card Previewer Command

Inputs
variable

A value from variable1 to variable20 indicating the parameter.

value
The value of the variable.

Example
Variables can be used to hold real or integer values. For example, to add the value of variable5 to the
current value of variable1, the following command could be used:

*menuvariableset(variable1,[variable1+variable5])

Unlike the *variableset() command that sets a global value for the entire output section of the
template, the *menuvariableset() command's value is only for the local scope of an entity as specified
by the *beginmenu() and *endmenu() commands.

*nomenu()
Specifies that the card image definition is in a following block.

Syntax
*nomenu()

Type
HyperMesh Card Previewer Command

Example
The *nomenu() command must be the first command to follow an entity block header.

*repeatcounter()
Specifies a counter to store the current repeat value for a *beginrepeat() or *beginrepeat2d()
command.

Syntax
*repeatcounter (counter number)

Type
HyperMesh Card Previewer Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.54

Inputs
counter number

An integer value between 1 and 20 indicating which of the 20 possible counters should be hold
the current repeat value.

*repeatwrap()
Sets the right margin so that no field goes beyond in a *beginrepeat()/*endrepeat() block.

Syntax
*repeatwrap (column)

Type
HyperMesh Card Previewer Command

Inputs
column

The right hand margin beyond which no field is displayed. If a field's length would place it beyond
column, it is placed in column 1 of the next line.

Example
If used, the *repeatwrap() command must be the first command to follow a *beginrepeat() or
*beginrepeat2d() command.

Undocumented Card Previewer Commands
The list of undocumented card previewer commands.

*globalmenuminimumstringlength()

*menudefault()

*menuentitypointerset()

*menuhelp()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.55

*globalmenuminimumstringlength()

*menudefault()

*menuentitypointerset()

*menuhelp()

1.3.2 Solver Template Commands

*accelerometers()
Starts an accelerometers block.

Syntax
*accelerometers (config)

Type
HyperMesh Template Command

Description
Starts an accelerometers block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all accelerometers with the format:

*accelerometers(id,"name")

*accelerometers()
 *format()
 *string("*accelerometers(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.56

 *string(")")
 *end()
*output()

Version History
14.0.130

*addblock()
Adds a block to a link.

Syntax
*addblock (name)

Type
HyperMesh Template Command

Inputs
name

*addcomment()
Sets the characters of strings which are considered comment lines.

Syntax
*addcomment ("comment_string")

Type
HyperMesh Template Command

Description
Sets the characters of lines which are considered comment lines. These strings are then used for
export/do not export of comments.

Inputs
comment_string

The complete string or the starting characters of the string.

Example
To add as comment lines that start with "**H" (**HWCOLOR COMP, **HMNAME, and so on) except
"**HM_UNSUPPORTED_CARDS_START":

*addcomment("**H")
*ignorecomment("**HM_UNSUPPORTED_CARDS_START")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.57

Version History
11.0.101

*after()
Indicates that the commands following are processed on the *after() level.

Syntax
*after ()

Type
HyperMesh Template Command

*aftercollector()
Indicates that the commands following are processed on the *aftercollector() level.

Syntax
*aftercollector ()

Type
HyperMesh Template Command

*alefsiprojections()
Starts an alefsiprojections block.

Syntax
*alefsiprojections (config)

Type
HyperMesh Template Command

Description
Starts an alefsiprojections block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.58

Example
To write out all alefsiprojections with the format:

*alefsiprojections(id,"name")

*alefsiprojections()
 *format()
 *string("*alefsiprojections(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*alereferencesystemcurves()
Starts an alereferencesystemcurves block.

Syntax
*alereferencesystemcurves (config)

Type
HyperMesh Template Command

Description
Starts an alereferencesystemcurves block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all alereferencesystemcurves with the format:

*alereferencesystemcurves(id,"name")

*alereferencesystemcurves()
 *format()
 *string("*alereferencesystemcurves(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.59

 *end()
*output()

Version History
2019

*alereferencesystemgroups()
Starts an alereferencesystemgroups block.

Syntax
*alereferencesystemgroups (config)

Type
HyperMesh Template Command

Description
Starts an alereferencesystemgroups block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all alereferencesystemgroups with the format:

*alereferencesystemgroups(id,"name")

*alereferencesystemgroups()
 *format()
 *string("*alereferencesystemgroups(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.60

*alereferencesystemnodes()
Starts an alereferencesystemnodes block.

Syntax
*alereferencesystemnodes (config)

Type
HyperMesh Template Command

Description
Starts an alereferencesystemnodes block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all alereferencesystemnodes with the format:

*alereferencesystemnodes(id,"name")

*alereferencesystemnodes()
 *format()
 *string("*alereferencesystemnodes(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*alereferencessystemswitches()
Starts an alereferencessystemswitches block.

Syntax
*alereferencessystemswitches (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.61

Description
Starts an alereferencessystemswitches block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all alereferencessystemswitches with the format:

*alereferencessystemswitches(id,"name")

*alereferencessystemswitches()
 *format()
 *string("*alereferencessystemswitches(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*alesmoothings()
Starts an alesmoothings block.

Syntax
*alesmoothings (config)

Type
HyperMesh Template Command

Description
Starts an alesmoothings block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.62

Example
To write out all alesmoothings with the format:

*alesmoothings(id,"name")

*alesmoothings()
 *format()
 *string("*alesmoothings(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*aletanktests()
Starts an aletanktests block.

Syntax
*aletanktests (config)

Type
HyperMesh Template Command

Description
Starts an aletanktests block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all aletanktests with the format:

*aletanktests(id,"name")

*aletanktests()
 *format()
 *string("*aletanktests(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.63

 *end()
*output()

Version History
2019

*assemblies()
Starts an assembly output block. All the assemblies in the HyperMesh database are output according to
the user-defined format in this block.

Syntax
*assemblies (assembly name)

Type
HyperMesh Template Command

Inputs
assembly name

Used as a key to distinguish between different types of assemblies.

Example
To output the components in an assembly, the *pointerset() command must be used to retrieve the
component IDs:

*counterset(counter1,0)
*loopif([counter1 != numberofcomponents])
*pointerset(pointer1,components,counter1)
*field(integer,pointer1.pointervalue,0)
*counterinc(counter1)
*endloop()

Requires an *output() command at the end of the block.

*attachmentcontrols()
Starts an attachmentcontrols block.

Syntax
*attachmentcontrols (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.64

Description
Starts an attachmentcontrols block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all attachmentcontrols with the format:

*attachmentcontrols(id,"name")

*attachmentcontrols()
 *format()
 *string("*attachmentcontrols(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020

*attachments()
Starts an attachments block.

Syntax
*attachments (config)

Type
HyperMesh Template Command

Description
Starts an attachments block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.65

Example
To write out all attachments with the format:

*attachments(id,"name")

*attachments()
 *format()
 *string("*attachments(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020

*bags()
Starts a bag output block.

Syntax
*bags

()

Type
HyperMesh Template Command

Description
This command starts a bag output block. All bag entities in the HyperMesh database are output
according to the user-defined format in this block.

Example
The following code outputs the ID and coordinates of every node that exists in all bags of configuration
1.

*bags()
 *format()
 *setcurrentbagentitytype(nodes)
 *if([config == 1])
 *if([entitylistmax > 0])
 *string("$")
 *end()
 *string("$ GRID Data For ")
 *field(string,name,0)
 *string(": ")
 *end()
 *string("$")
 *end()
 *endif()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.66

 *counterset(counter1,0)
 *loopif([counter1 < entitylistmax])
 *pointerset(pointer1,entitylist,counter1)
 *string("GRID ")
 *fieldleft(integer,pointer1.pointervalue,8)
 *variableset(variable1,[@getentityvalue(nodes,pointer1.pointervalue,x)])
 *field(real,variable1,8)
 *variableset(variable1,[@getentityvalue(nodes,pointer1.pointervalue,y)])
 *field(real,variable1,8)
 *variableset(variable1,[@getentityvalue(nodes,pointer1.pointervalue,z)])
 *field(real,variable1,8)
 *end()
 *counterset(counter1,[counter1+1])
 *endloop()
 *end()
 *string("$---")
 *end()
 *string("$---")
 *end()
 *endif()
*output()

*beamsectcols()
Starts a beamsectcols block.

Syntax
*beamsectcols ()

Type
HyperMesh Template Command

Description
Starts a beamsectcols block.

This command must be accompanied by a *output() command at the end of the block.

Example
To write out all beamsectcols with the format:

*beamsectcols(id,"name",color)

*beamsectcols()
*format()
*string("*beamsectcols(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,color,0)
*string(")")
*end()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.67

*beamsects()
Starts a beamsects block.

Syntax
*beamsects ()

Type
HyperMesh Template Command

Description
Starts a beamsects block.

This command must be accompanied by a *output() command at the end of the block.

Example
To write out all beamsects with the format:

*beamsects(id,setid,"name",config)

*beamsects()
*format()
*string("*beamsects(")
*field(integer,id,0)
*string(",")
*field(integer,setid,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,config,0)
*string(")")
*end()
*output()

*before()
Indicates that the commands following are processed on the *before() level.

Syntax
*before ()

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.68

*beforecollector()
Indicates that the commands following are processed on the *before() collector level.

Syntax
*beforecollector ()

Type
HyperMesh Template Command

*beginlink()
Starts a link.

Syntax
*beginlink (type, name)

Type
HyperMesh Template Command

Inputs
type

name

Example
Links can be used to tie output blocks together.

*blocks()
Starts a finite difference block output block. All the blocks in the HyperMesh database are output
according to the user-defined format in this block.

Syntax
*blocks ()

Type
HyperMesh Template Command

Inputs
name

Blocks with this card image name will be output.
Used as a key to distinguish different types of blocks.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.69

Example
To output the locations of the i, j, or k divisions of a block, the *pointerset() command must be used:

*counterset(counter1,0)
*loopif([counter1 != divi])
 *pointerset(pointer1,idivisions,counter1)
 *field(real,pointer1.pointervalue,8)
 *counterinc(counter1)
*endloop()
To output the wall data for a block, the following commands may be used:
*counterset(counter1,0)
*loopif([counter1 != wallsmax])
 *pointerset(pointer1,blockwall,counter1)
 *field(integer,pointer1.wallid,8)
 *field(string,pointer1.wallname,0)
 *field(integer,pointer1.wallcolor,8)
 *counterinc(counter1)
*endloop()

Requires an *output() command at the end of the block.

*bodies()
Starts a bodies block.

Syntax
*bodies (config)

Type
HyperMesh Template Command

Description
Starts a bodies block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out standard mechanisms and their associated objects:

*mechanisms(1)
 *format()
 *string("*MECHANISM")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.70

 *bodies()
 *format()
 *string("*BODY")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()

 *joints()
 *format()
 *string("*JOINT")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()

 *constraints()
 *format()
 *string("*CONSTRAINT")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()

 *positions(1)
 *format()
 *string("*POSITION")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()
*output()

Version History
14.0.120

*boxes()
Starts a boxes block.

Syntax
*boxes (config)

Type
HyperMesh Template Command

Description
Starts a boxes block.

This command must be accompanied by a *output() command at the end of the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.71

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all boxes with the format:

*boxes(id,"name")

*boxes()
 *format()
 *string("*boxes(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
14.0

*cards()
Starts a Control Card output block.

Syntax
*cards (card name)

Type
HyperMesh Template Command

Inputs
card name

The name of the card to output.

Example
To output the CTRL_TITLE card the following commands may be used:

*cards("CTRL_TITLE")
 *format()
 *string("TITLE / ")
 *string(" ")
 *fieldleft(string,$TITLE_VAL,48)
*end()
*output()

Requires a *output() at the end of the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.72

*codename()
Sets a unique solver number to be used for identifying attributes.

Syntax
*codename (solver, identifier)

Type
HyperMesh Template Command

Inputs
solver

The name of the solver.

identifier
A unique number identifying the solver.

Example
The *codename()command must occur before the first *defineattribute() command. All attributes
created with this template are marked with this solver identifier.

Solver identifiers 0-63 are reserved for HyperMesh officially supported templates. Solver identifiers
64-127 are available for user-defined templates. If two templates are to share a set of attributes, they
should have both the same solver identifier and the exact set of *defineattribute() commands.

*collections()
Starts a collections block.

Syntax
*collections (config)

Type
HyperMesh Template Command

Description
Starts a collections block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.73

Example
To write out all collections with the format:

*collections(id,"name")

*collections()
 *format()
 *string("*collections(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Errors
Incorrect usage results in an import error.

*collisions()
Starts a collisions block.

Syntax
*collisions (config)

Type
HyperMesh Template Command

Description
Starts a collisions block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all collisions with the format:

*collisions(id,"name")

*collisions()
 *format()
 *string("*collisions(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.74

 *end()
*output()

Version History
2017.1

*comments()
Starts a comment block.

Syntax
*comments (config)

Type
HyperMesh Template Command

Description
Starts a comment block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all comments with the format:

*comments(id,"name")

*comments()
 *format()
 *string("*comments(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.75

*components()
Starts a component block.

Syntax
*components (card_image_name, mat_card_image_name)

Type
HyperMesh Template Command

Description
Starts a component block. Components with a card image matching the specified card image name are
considered for the block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
card_image_name

A 32-character string enclosed in double quotes that defines the card image name of the
components in the block. If specified as double quotes "", all components are considered for the
block.
If a *elements() block has specified a prop_card_image_name value matching this string, the
component collector to which those elements point is marked.

mat_card_image_name
A 32-character string enclosed in double quotes that defines the card image name of the material
that the components in the block require. If not needed, use empty double quotes "".
The name is also used to link to the *materials() commands.

Example
To write out all components with the format:

*component(id,"name",material ID,color,property ID)

*components("","")
*format()
*string("*component(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,materialid,0)
*string(",")
*field(integer,color,0)
*string(",")
*field(integer,propertyid,0)
*string(")")
 *end()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.76

*compressreal()
Changes how real numbers are written to the output deck.

Syntax
*compressreal (flag)

Type
HyperMesh Template Command

Description
This command changes how real numbers are written to the output deck. The default value is 1. If
used along with *realprecision, trailing zeros will be converted to blanks after the digits specified by
*realprecision. For example, *realprecision(4) forces four digits to be written, even if they are
zeros.

Inputs
flag

Trailing zeros are written as blanks.
Zero is not written to the left of the decimal.
In addition to performing compression, this command will add extra significant digits where
applicable, while also rounding off precisely at the last digit. The compression is performed in
accordance with the following rules and conditions:
This flag is applicable only for output of real numbers using any of the *field commands that have
"real" as their first argument, and also have a non-zero width argument. Thus, the command will
have no effect on the output produced using *field(exponential,value,8), or *field(real,value,0),
for instance.
For values that are either too large or too small such that use of the ‘E’ is necessary to represent
the number within the given width, the following conditions are applied:
By default, ‘E’ is omitted, and an extra significant digit is added, if applicable. However, ‘E’ can be
output, by passing a custom export string to the command *feouputwithdata. Please refer to the
documentation of that command for more details.
Any leading zeros on the exponential part are always omitted. Instead, additional significant
digit(s) are output, where applicable.
For values that do not require the use of ‘E’, the following conditions apply:
For a number whose absolute value is less than 1.0, the zero to the left of the decimal point is
omitted if doing so results in adding an extra significant digit.
For a whole number whose absolute value is greater than or equal to 1.0, the zero to the right of
the decimal point is omitted if doing so results in a more accurate representation of the number
within the given width.
Trailing zeros that do not contribute to the accuracy of a number are always replaced with blanks,
leaving only one zero, at the most.
This flag also provides a means of rounding off real numbers whose absolute value is within
a specified tolerance, to zero. This option is off by default, but can be turned on by passing a
custom export string to the command *feoutputwithdata. Please refer to the documentation of
that command for more details.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.77

Example
Using *compressreal(1) causes HyperMesh to write numbers such as 0.0000 as 0.0.

Using *compressreal(2) causes HyperMesh to write numbers such as 0.123456 as .123456.

The table below has examples of output obtained using *compressreal(3). The examples assume
default options, that is, without the use of the custom strings mentioned above in *feoutputwithdata.

Actual value Output in field of width 8 Output in field of width 16

0.125 0.125 0.125

0.1254768 .1254768 0.1254768

0.12547687 .1254769 0.12547687

0.125476842 .1254768 0.125476842

1.02356E+015 1.024+15 1.02356+15

-1.02356E+015 -1.02+15 -1.02356+15

*configurations()
Starts a configurations block.

Syntax
*configurations (config)

Type
HyperMesh Template Command

Description
Starts a configurations block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all configurations with the format:

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.78

*configurations(id,"name")

*configurations()
 *format()
 *string("*configurations(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

*connectorgroups()
Starts a connectorgroups block.

Syntax
*connectorgroups (config)

Type
HyperMesh Template Command

Description
Starts a connectorgroups block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all connectorgroups with the format:

*connectorgroups(id,"name")

*connectorgroups()
 *format()
 *string("*connectorgroups(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.79

*connectorsets()
Starts a connectorsets block.

Syntax
*connectorsets (config)

Type
HyperMesh Template Command

Description
Starts a connectorsets block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all connectorsets with the format:

*connectorsets(id,"name")

*connectorsets()
 *format()
 *string("*connectorsets(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*constrainedextranodes()
Starts a constrainedextranodes block.

Syntax
*constrainedextranodes (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.80

Description
Starts a constrainedextranodes block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all constrainedextranodes with the format:

*constrainedextranodes(id,"name")

*constrainedextranodes()
 *format()
 *string("*constrainedextranodes(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
14.0

*constrainedrigidbodies()
Starts a constrainedrigidbodies block.

Syntax
*constrainedrigidbodies (config)

Type
HyperMesh Template Command

Description
Starts a constrainedrigidbodies block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.81

Example
To write out all constrainedrigidbodies with the format:

*constrainedrigidbodies(id,"name")

*constrainedrigidbodies()
*format()
*string("*constrainedrigidbodies(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(")")
*end()
*output()

Version History
14.0.120

*constraints()
Starts a constraints block.

Syntax
*constraints (config)

Type
HyperMesh Template Command

Description
Starts a constraints block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out standard mechanisms and their associated objects:

*mechanisms(1)
 *format()
 *string("*MECHANISM")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()

 *bodies()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.82

 *format()
 *string("*BODY")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()

 *joints()
 *format()
 *string("*JOINT")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()

 *constraints()
 *format()
 *string("*CONSTRAINT")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()

 *positions(1)
 *format()
 *string("*POSITION")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()
*output()

Errors
Incorrect usage results in an import error.

*contactsurfs()
Starts a contactsurfs block.

Syntax
*contactsurfs (card_image_name)

Type
HyperMesh Template Command

Description
Starts a contactsurfs block. Contactsurfs with a card image matching the specified card image name are
considered for the block.

This command must be accompanied by a *output() command at the end of the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.83

Inputs
card_image_name

A 32-character string enclosed in double quotes that defines the card image name of the
contactsurfs in the block. If specified as double quotes "", all contactsurfs are considered for the
block.

Example
To write out all contactsurfs with the format:

*contactsurfs(id,"name",color)
*contactsurfelement(id,facecode,reversecode)
*contactsurfelement(id,facecode,reversecode)
...

*contactsurfs("")
*format()
*string("*contactsurfs(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,color,0)
*string(")")
*if([facesmax != 0])
*end()
*endif()
*counterset(counter1, 0)
*loopif([counter1 < facesmax])
*pointerset(pointer1, faces, counter1)
*string("*contactsurfelement(")
*field(integer, pointer1.element.id, 0)
*string(",")
*field(integer, pointer1.facecode, 0)
*string(",")
*field(integer, pointer1.reversecode, 0)
*string(")")
*if([counter1 != facesmax-1])
*end()
*endif()
*counterinc(counter1)
*endloop()
*end()
*output()

*contactbehaviors()
Starts a contactbehaviors block.

Syntax
*contactbehaviors (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.84

Description
Starts a contactbehaviors block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all contactbehaviors with the format:

*contactbehaviors(id,"name")

*contactbehaviors()
 *format()
 *string("*contactbehaviors(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020.1

*contactgroups()
Starts a contactgroups block.

Syntax
*contactgroups (config)

Type
HyperMesh Template Command

Description
Starts a contactgroups block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.85

Example
To write out all contactgroups with the format:

*contactgroups(id,"name")

*contactgroups()
 *format()
 *string("*contactgroups(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2017.1

*controlvols()
Starts a control volume block.

Syntax
*controlvols (card_image_name,?idpool_name?)

Type
HyperMesh Template Command

Description
Starts a control volume block. Control volumes with a card image matching the specified card image
name are considered for the block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
card_image_name

A 32-character string enclosed in double quotes that defines the card image name of the control
volume. If specified as double quotes "", all control volumes are considered for the block.

idpool_name
An optional 32-character string enclosed in double quotes that defines the name of the ID pool
that the control volume belongs to. If not needed, use double quotes "" or omit the argument.
The ID pool must be defined using the *defineidpool() command.

Example
To write out all control volumes with the format:

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.86

*controlvol(id,"name",entityid,type,elemidsmax,refnodesmax)

*controlvols("","")
*format()
*string("*controlvol(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,entityid,0)
*string(",")
*field(integer,type,0)
*string(",")
*field(integer,elemidsmax,0)
*string(",")
*field(integer,refnodesmax,0)
*string(")")
*end()
*output()

*counterinc()
Increments a counter.

Syntax
*counterinc (counter)

Type
HyperMesh Template Command

Inputs
counter

Value from counter1 to counter20 indicating the counters to be incremented.

*counterset()
Sets the initial value of the global counter.

Syntax
*counterset (counter, value)

Type
HyperMesh Template Command

Inputs
counter

Value from counter1 to counter20 indicating the counter(s) to set to the next parameter.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.87

value
Value of the counter.

Example
Counters can be useful to specify continuation cards on some analysis codes. For an example, see
theNastran template file in HyperMesh.

*createmergedloadloadsteptable()
Creates the table containing merged loads for a loadstep.

Syntax
*createmergedloadloadsteptable ()

Type
HyperMesh Template Command

Description
Creates the table containing merged loads for a loadstep. The loads which are applied on the same
entities and have the same configuration, type and load step will be merged. This is used for force,
moment, velocity and acceleration only. This command will merge only when the combine loads in
loadstep flag of custom export is utilized.

This command must be inside a *loadsteps() block and should be called in the *before() section. It
must be followed by a call to *deletemergedloadloadsteptable().

Example
To write out loadsteps using merged loads:

*loadsteps()
*before()
*createmergedloadloadsteptable()
*format()
...
*after()
*deletemergedloadloadsteptable()
*output()

Version History
11.0.101

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.88

*crosssections()
Starts a crosssections block.

Syntax
*crosssections (config)

Type
HyperMesh Template Command

Description
Starts a crosssections block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all crosssections with the format:

*crosssections(id,"name")

*crosssections()
 *format()
 *string("*crosssections(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
14.0

*curves()
Starts a curves block.

Syntax
*curves ()

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.89

Description
Starts a curves block.

This command must be accompanied by a *output() command at the end of the block.

Example
To write out all curves with the format:

*curve(id,"name","title")

*curve(id,"name","title")
*curves()
*format()
*string("*curve(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(quotedstring,title,0)
*string(")")
*end()
*output()

*dampings()
Starts a damping block.

Syntax
*dampings (config)

Type
HyperMesh Template Command

Description
Starts a damping block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all dampings with the format:

*dampings(id,"name")

*dampings()
 *format()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.90

 *string("*dampings(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019.1

*define()
Defines a dictionary item.

Syntax
*define (name, type, value, active)

Type
HyperMesh Template Command

Inputs
name

The name of the dictionary item.

type
The type of the dictionary item.

value
The initial value assigned to the data item. This should be a number except if the item type is
string.

active
Determines the activity of the dictionary item.

Example
The available types are listed below:

none No value is associated with the item.

string The item has a string assigned to it.

Integer The item has an integer assigned to it.

real The item has a real value assigned to it.

-1 Always active.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.91

0 Not active but user can toggle.

1 Active and user can toggle.

Items whose activity is set to -1 appear white on the dictionary edit menu. If the activity is set to 0 or
1, the menu item appears in cyan, and you may choose to star the item.

*defineattribute()
Defines an attribute for a solver.

Syntax
*defineattribute (name, identifier, type, behavior)

Type
HyperMesh Template Command

Inputs
name

The attribute name (maximum of 31 characters).

identifier
The number associated with the attribute. The z can be in the range of 1 to 32768.

type
The attribute type. Legal values are:

integer Attribute contains an integer

arrayofinteger Attribute contains an array of integer numbers

arrayofinteger2d Attribute contains a 2d array of integer numbers

real Attribute contains a floatingpointnumber

arrayofreal Attribute contains an array of floating point numbers

arrayofreal2d Attribute contains a 2d array of floating point numbers

string Attribute contains a string

arrayofstring Attribute contains an array of strings

entity Attribute contains a reference to an entity (its ID and type)

arrayofentity Attribute contains an array of entities

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.92

arrayofentity2d Attribute contains a 2d array of entities

behavior
Determines how attributes are treated when the entity that owns it is changed. This field has not
been implemented. The only value for behavior is none.

Example
All entities in the HyperMesh database may point to attributes. Attributes are defined with the
*defineattribute command.

*defineentitytypealiasname()
Defines an entity type alias name for a solver.

Syntax
*defineentitytypealiasname (entity_type, alias_name)

Type
HyperMesh Template Function

Description
Defines an entity type alias name for a solver.

Inputs
entity_type

The entity type to create the alias for.

alias_name
The alias name.

Examples
To define an alias for components as "PART COMPONENT":

*defineentitytypealiasname(comps, "PART COMPONENT")

Version History
2019

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.93

*deletemassthicknesstable()
Deletes the element mass/thickness table.

Syntax
*deletemassthicknesstable ()

Type
HyperMesh Template Command

Description
Deletes the element mass/thickness table created by *populatemassthicknesstable().

This command must be inside either a *components() or *elements() block and should be called in the
*after() section. It must be preceded by a call to *populatemassthicknesstable().

Example
To write out the mass of every component in the format

id,"name",mass

*components("","")
*before()
*populatemassthicknesstable()
*format()
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(real,mass,0)
*end()
*after()
*deletemassthicknesstable()
*output()

Version History
11.0

 *deletemergedloadloadsteptable()
Deletes the table containing merged loads for a loadstep.

Syntax
*deletemergedloadloadsteptable ()

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.94

Description
Deletes the table containing merged loads for a loadstep created by
*createmergedloadloadsteptable().

This command must be inside a *loadsteps() block and should be called in the*after() section. It
must be preceeded by a call to *createmergedloadloadsteptable().

Example
To write out loadsteps using merged loads:

*loadsteps()
*before()
*createmergedloadloadsteptable()
*format()
...
*after()
*deletemergedloadloadsteptable()
*output()

Version History
11.0.101

*dequations()
Starts a dequations output block.

Syntax
*dequations ()

Type
HyperMesh Template Command

Example
Requires a *output() at the end of the block.

*designpointmethods()
Starts a designpointmethod block.

Syntax
*designpointmethods (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.95

Description
Starts a designpointmethod block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all designpointmethods with the format:

*designpointmethods(id,"name")

*designpointmethods()
 *format()
 *string("*designpointmethods(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019.1

*designpoints()
Starts a designpoint block.

Syntax
*designpoints (config)

Type
HyperMesh Template Command

Description
Starts a designpoint block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.96

Example
To write out all designpoints with the format:

*designpoints(id,"name")

*designpoints()
 *format()
 *string("*designpoints(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019.1

*designpointsets()
Starts a designpointset block.

Syntax
*designpointsets (config)

Type
HyperMesh Template Command

Description
Starts a designpointset block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all designpointsets with the format:

*designpointsets(id,"name")

*designpointsets()
 *format()
 *string("*designpointsets(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.97

 *end()
*output()

Version History
2019.1

*designvars()
Starts a design variable output block.

Syntax
*designvars ()

Type
HyperMesh Template Command

Example
Requires an *output() command at the end of the block.

*desvarlinks()
Starts a dlink output block.

Syntax
*desvarlinks ()

Type
HyperMesh Template Command

Example
Requires an *output() command at the end of the block.

*directmatrixinputs()
Starts a direct matrix input block.

Syntax
*directmatrixinputs (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.98

Description
Starts a direct matrix input block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all direct matrix inputs with the format:

*directmatrixinputs(id,"name")

*directmatrixinputs()
 *format()
 *string("*directmatrixinputs(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2017

*dvprels()
Starts a dvprel output block.

Syntax
*dvprels ()

Type
HyperMesh Template Command

Example
Requires an *output() command at the end of the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.99

*elementareacalculation()
Determines how to calculate the area of an element.

Syntax
*elementareacalculation (type, num)

Type
HyperMesh Template Command

Inputs
type

The element type. Only "quad4" is supported.

num
Can be 1 (one point gaussian quadrature) or 4 (four point gaussian quadrature).

*elementclusters()
Starts an elementclusters block.

Syntax
*elementclusters (config)

Type
HyperMesh Template Command

Description
Starts an elementclusters block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all elementclusters with the format:

*elementclusters(id,"name")

*elementclusters()
 *format()
 *string("*elementclusters(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.100

 *string(")")
 *end()
*output()

Version History
2019

*elementresultstore()
Stores an element value for the current element.

Syntax
*elementresultstore (value)

Type
HyperMesh Template Command

Inputs
value

The element value to be stored.

Example

*function("HM_CALC_TIMESTEP",variable16,variable17, variable18,variable19,variable20)
 *elements(60,0,"BEAM","")
 ... put result into variable1
 *elementresultstore(variable1)
 *output()
*return()

This command can be used in the template function, HM_CALC_TIMESTEP, to store the initial time step
for each element. When time steps have been saved, an assigned plot can be created in the Check
Elements panel.

This function must be called in the *format() section of an *elements() block.

*elements()
Starts an element block.

Syntax
*elements (config, type, user_name, prop_card_image_name,?idpool_name?)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.101

Description
Starts an element block. Elements matching the specified config and type are considered for the block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
config

Defines the element config that should be used for this block. If specified as 0, elements of all
configs are considered for the block.

type
Defines the element type that should be used for this block. If specified as 0, all elements of the
specified config are considered for the block.

user_name
A 32-character string enclosed in double quotes that defines the name of the element config/type
combination.

prop_card_image_name
A 32-character string enclosed in double quotes that defines the card image name of the property
that the elements in the block require. If not needed, use empty double quotes "".
The name is also used to link to the *components() and *properties() commands.

idpool_name
An optional 32-character string enclosed in double quotes that defines the name of the ID pool
that the elements belong to. If not needed, use double quotes "" or omit the argument.
The ID pool must be defined using the *defineidpool() command.

Example
To write out all quad4 elements with the format:

*quad4(id,type,node 1 ID,node 2 ID,node 3 ID,node 4 ID,property ID)

*elements(104,0,"QUAD4","")
*format()
*string("*quad4(")
*field(integer,id,0)
*string(",")
*field(integer,type,0)
*string(",")
*field(integer,node1.id,0)
*string(",")
*field(integer,node2.id,0)
*string(",")
*field(integer,node3.id,0)
*string(",")
*field(integer,node4.id,0)
*string(",")
*if([propertyidflag == 1])
*field(integer,propertyid,0)
*else()
*string("0")
*endif()
*string(")")
 *end()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.102

*output()

*else()
Used to define false conditions for an *if() block.

Syntax
*else ()

Type
HyperMesh Template Command

Description
Used to define false conditions for an *if() block. Additional *if() commands can be used to create
else-if conditions.

This command must be accompanied by a *if() command at the beginning of the block and a
*endif() command at the end of the block.

Example
To output a portion of a CQUAD4 element with conditions depending on the property assignment:

*elements(104,1,"CQUAD4","")
*format()
*string("CQUAD4 ")
*field(integer,id,8)
*if([propertyid == 0])
*field(integer,collector.propertyid,8)
*else()
*field(integer,propertyid,8)
*endif()
*field(integer,node1.id,8)
*field(integer,node2.id,8)
*field(integer,node3.id,8)
*field(integer,node4.id,8)
 *end()
*output()

*enabledatabase()
Used to scan for entities in the HyperMesh database.

Syntax
*enabledatabase (flag)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.103

Inputs
flag

The flag can be set to all or selected.
If you set the flag to all, the entity output commands (such as *nodes()) scan all entities in the
database, even if you select displayed on the Export panel or Summary panel.
If you set the flag to selected, and you select displayed on the Export panel or Summary panel,
the entity output commands scan the database for the displayed commands only.

Example
When writing export and summary templates, it may be necessary to scan the entire database before
processing the displayed entities. To do this, use *enabledatabase(all). To scan the database for
only the entities that you selected (this can be all or displayed), use *enabledatabase(selected).
*enabledatabase() should be used outside of any other command blocks and can be used more than
once.

*encryptions()
Starts an encryptions block.

Syntax
*encryptions (config)

Type
HyperMesh Template Command

Description
Starts an encryptions block.

This command must be accompanied by an *output() command at the end of the block

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all encryptions with the format:

*encryptions(id,"name")

*encryptions()
 *format()
 *string("*encryptions(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.104

*output()

Version History
14.0

*end()

Syntax
*end ()

Type
HyperMesh Template Command

Example
This command ends the current line and places the output cursor at the beginning of the next line in the
output file.

*endif()
Used to define the end of an *if() block.

Syntax
*endif ()

Type
HyperMesh Template Command

Description
Used to define the end of an *if() block.

This command must be accompanied by a *if() command at the beginning of the block.

Example
To output a portion of a CQUAD4 element with conditions depending on the property assignment:

*elements(104,1,"CQUAD4","")
*format()
*string("CQUAD4 ")
*field(integer,id,8)
*if([propertyid == 0])
*field(integer,collector.propertyid,8)
*else()
*field(integer,propertyid,8)
*endif()
*field(integer,node1.id,8)
*field(integer,node2.id,8)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.105

*field(integer,node3.id,8)
*field(integer,node4.id,8)
 *end()
*output()

*endlink()
Ends a link.

Syntax
*endlink ()

Type
HyperMesh Template Command

*endloop()
Indicates the end of a block that was initialized with the *loopif() command.

Syntax
*endloop ()

Type
HyperMesh Template Command

*endsegments()
Ends a segment block.

Syntax
*endsegments ()

Type
HyperMesh Template Command

*entitypointerset()
Sets the initial value of a specified entity.

Syntax
*entitypointerset (entity type, entity id, pointer number, pointer, value)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.106

Type
HyperMesh Template Command

Inputs
entity type

The type of entity, such as sets, elems, or nodes, to which entity id refers.

entity id
The ID of the entity you want to reference.

pointer number
Value from pointer1 to pointer10, indicating which of the 10 possible pointers to use as the value
parameter.

pointer
Points to the data object that is accessed. Only certain data types may use pointers. These are
described in the template commands in which they are valid.

value
The value of the pointer.

Example
*entitypointerset() can be used on any entity specified by entity type and entity id.

*equations()
Starts an equation output block. The equations in the HyperMesh database with a type equal to the type
argument are output according to the user-defined format in this block.

Syntax
*equations (type, user name)

Type
HyperMesh Template Command

Inputs
type

The user-defined type that is output.

user name
The user-defined name for type.

Example
The following example outputs equations in a format similar to Abaqus:

*equations(0,"EQUATION")
*format()
 *string("*EQUATION") *end()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.107

 *counterset(counter1,[independentnodesmax+1])
 *field(integer,counter1,0)
 *end()
 *field(integer,dependentnode.id,0)
 *string(",")
 *field(integer,dependentdof,0)
 *string(",")
 *field(real,dependentcoeff,0)
 *string(",")
 *counterset(counter1,0)
 *loopif([counter1 < independentnodesmax])
 *pointerset(pointer1,independentnodes,counter1)
 *field(integer,pointer1.pointervalue,0)
 *string(",")
 *pointerset(pointer1,independentdofs,counter1)
 *field(integer,pointer1.pointervalue,0)
 *string(",")
 *pointerset(pointer1,independentcoeffs,counter1)
 *field(real,pointer1.pointervalue,0)
 *counterinc(counter1)
 *endloop()
 *end()
*output()

*errormessage()
Displays an error message on the menu bar.

Syntax
*errormessage (string)

Type
HyperMesh Template Command

Inputs
string

String to be displayed.

Example
The example below displays an error for each quad4 that has a jacobian less than .7:

*elements(104,0,"","")
 *format()
 *if([jacobian < .7])
 *errormessage("jacobian less than .7")
 *endif()
*output()

Each time *errormessage() is called, it overwrites the last error message. If the right mouse button is
pressed while printing an error message, HyperMesh stops processing the template.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.108

*executetclscript()
Executes a Tcl script from within a template, and optionally calls a procedure defined in the script.

Syntax
*executetclscript (filename, proc_name)

Type
HyperMesh Template Command

Description
Executes a Tcl script from within a template, and optionally calls a procedure defined in the script.

This command should be called in the *before() section.

Inputs
filename

Full path of the Tcl file to be executed. The path should be always defined with two back slashes.

proc_name
Name of the procedure to be executed. If not required, use two empty quotes.

Example
To execute a Tcl file

C:\TclScripts\test.tcl"

without a call to specific procedure:

*executetclscript("C:\\TclScripts\\test.tcl","")

To execute a Tcl file

C:\TclScripts\test.tcl

and call a procedure named TestProc:

*executetclscript("C:\\TclScripts\\test.tcl","TestProc")

*explorations()
Starts an explorations block.

Syntax
*explorations (config)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.109

Type
HyperMesh Template Command

Description
Starts an explorations block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all explorations with the format:

*explorations(id,"name")

*explorations()
 *format()
 *string("*explorations(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020

*failures()
Starts a failures block.

Syntax
*failures (config)

Type
HyperMesh Template Command

Description
Starts a failures block.

This command must be accompanied by a *output() command at the end of the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.110

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all failures with the format:

*failures(id,"name")

*failures()
 *format()
 *string("*failures(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*field()
Places a formatted value from the database into the output file.

Syntax
*field (type, data name, width)

Type
HyperMesh Template Command

Inputs
type

Either integer, unsigned, real, exponential, string, hexadecimal, or quoted. For simplicity, the first
letter is required; all others are optional but recommended.

data name
The name of the data to be accessed.

width
The width of the formatted field. In the case of real, HyperMesh uses scientific notation in order to
make the value printed fit.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.111

*fieldleft()
Places a left-justified, formatted value from the database into the output file.

Syntax
*fieldleft (type, data name, width)

Type
HyperMesh Template Command

Inputs
type

Either integer, unsigned, real, exponential, string, hexadecimal, or quoted. For simplicity, the first
letter is required; all others are optional but recommended.

data name
The name of the data to be accessed.

width
Width of the formatted field. In the case of real, HyperMesh uses scientific notation in order to
make the value printed fit.

*fieldleftwithcomments()
Places a left-justified, formatted field name and value from the database into the output file. The field
name is written just above the value line.

Syntax
*fieldleftwithcomments (field_name, type, data_name, width)

Type
HyperMesh Template Command

Description
Places a left-justified, formatted field name and value from the database into the output file. The field
name is written just above the value line.

Inputs
field_name

The solver field name of characters. If the string contains a space, an asterisk, or a comma, the
string must be enclosed by double quotes. If the string name length is less than the width, spaces
are appended after the string. If the string name length is more than the width, the name is
truncated such that the length is equal to width.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.112

type
Either integer, unsigned, real, exponential, string, hexadecimal, or quoted. For simplicity, the first
letter is required; all others are optional but recommended.

data_name
The name of the data to be accessed.

width
Width of the formatted field. In the case of real, scientific notation is used in order to make the
value fit.

Example
To write the left-justified field name "My field" with the integer data name myint using a width of 10:

*fieldleftwithcomments("My field",integer,myint,10)

Version History
2020

*fieldright()
Places a right-justified, formatted value from the database into the output file.

Syntax
*fieldright (type, data name, width)

Type
HyperMesh Template Command

Inputs
type

Either integer, unsigned, real, exponential, string, hexadecimal, or quoted. For simplicity, the first
letter is required; all others are optional but recommended.

data name
The name of the data to be accessed.

width
The width of the formatted field. In the case of real, HyperMesh uses scientific notation in order to
make the value printed fit.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.113

*fieldrightwithcomments()
Places a right-justified, formatted field name and value from the database into the output file. The field
name is written just above the value line.

Syntax
*fieldrightwithcomments (field_name, type, data_name, width)

Type
HyperMesh Template Command

Description
Places a right-justified, formatted field name and value from the database into the output file. The field
name is written just above the value line.

Inputs
field_name

The solver field name of characters. If the string contains a space, an asterisk, or a comma, the
string must be enclosed by double quotes. If the string name length is less than the width, spaces
are appended after the string. If the string name length is more than the width, the name is
truncated such that the length is equal to width.

type
Either integer, unsigned, real, exponential, string, hexadecimal, or quoted. For simplicity, the first
letter is required; all others are optional but recommended.

data_name
The name of the data to be accessed.

width
Width of the formatted field. In the case of real, scientific notation is used in order to make the
value fit.

Example
To write the right-justified field name "My field" with the integer data name myint using a width of 10:

*fieldrightwithcomments("My field",integer,myint,10)

Version History
2020

*fields()
Starts a fields block.

Syntax
*fields (config)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.114

Type
HyperMesh Template Command

Description
Starts a fields block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all fields with the format:

*fields(id,"name")

*fields()
 *format()
 *string("*fields(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
14.0

*fieldwithcomments()
Places a formatted field name and value from the database into the output file. The field name is
written just above the value line.

Syntax
*fieldwithcomments (field_name, type, data_name, width)

Type
HyperMesh Template Command

Description
Places a formatted field name and value from the database into the output file. The field name is
written just above the value line.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.115

Inputs
field_name

The solver field name of characters. If the string contains a space, an asterisk, or a comma, the
string must be enclosed by double quotes. If the string name length is less than the width, spaces
are appended after the string. If the string name length is more than the width, the name is
truncated such that the length is equal to width.

type
Either integer, unsigned, real, exponential, string, hexadecimal, or quoted. For simplicity, the first
letter is required; all others are optional but recommended.

data_name
The name of the data to be accessed.

width
Width of the formatted field. In the case of real, scientific notation is used in order to make the
value fit.

Example
To write the -justified field name "My field" with the integer data name myint using a width of 10:

*fieldwithcomments("My field",integer,myint,10)

Version History
2020

*format()
Indicates that the following commands should be executed on the format level.

Syntax
*format ()

Type
HyperMesh Template Command

*freebodygroups()
Starts a freebodygroup block.

Syntax
*freebodygroups (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.116

Description
Starts a freebodygroup block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all freebodygroups with the format:

*freebodygroups(id,"name")

*freebodygroups()
 *format()
 *string("*freebodygroups(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019.1

*freebodysections()
Starts a freebodysection block.

Syntax
*freebodysections (config)

Type
HyperMesh Template Command

Description
Starts a freebodysection block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.117

Example
To write out all freebodysections with the format:

*freebodysections(id,"name")

*freebodysections()
 *format()
 *string("*freebodysections(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019.1

*frictions()
Starts a friction block.

Syntax
*frictions (config)

Type
HyperMesh Template Command

Description
Starts a friction block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all frictions with the format:

*frictions(id,"name")

*frictions()
 *format()
 *string("*frictions(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.118

 *end()
*output()

Version History
2020

*function()
Starts a function block.

Syntax
*function (name, variables)

Type
HyperMesh Template Command

Inputs
name

The name of the function. Names should not begin with HM_ (these are reserved for use by
HyperMesh).

variables
The variables to be returned to HyperMesh (variable1 - variable20). The number of variables
depends on the function. Functions can be used by HyperMesh to calculate information needed in
some panels.

Example
Obtain material data utilized for time step calculations for Abaqus shell and solid elements:

//variable1 = Young's modulus for the material
//variable2 = Poisson's ratio for the material
//variable3 = mass density for the material
*function("MATERIAL_DATA",variable1,variable2,variable3)
 *materials("")
 *format()
 *variableset(variable1,0)
 *variableset(variable2,0)
 *if([$UseElasticCard == 1])
 *if([$ElasticTypeEnumField <= 1]) //ISOTROPIC
 *variableset(variable1,[@attributearrayvalue($Young,1)])
 *variableset(variable2,[@attributearrayvalue($Poiss,1)])
 *endif()
 *if([$ElasticTypeEnumField == 2]) //ENGINEERING CONSTANTS
 *variableset(variable1,[@attributearrayvalue($E1,1)])
 *variableset(variable1,[variable1+@attributearrayvalue($E2,1)])
 *variableset(variable1,[variable1+@attributearrayvalue($E3,1)])
 *variableset(variable1,[variable1/3.0])
 *variableset(variable2,[@attributearrayvalue($Nu12,1)])
 *variableset(variable2,[variable2+@attributearrayvalue($Nu13,1)])
 *variableset(variable2,[variable2+@attributearrayvalue($Nu23,1)])
 *variableset(variable2,[variable2/3.0])
 *endif()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.119

 *if([$ElasticTypeEnumField == 3]) //LAMINA
 *variableset(variable1,[@attributearrayvalue($EL1,1)])
 *variableset(variable1,[variable1+@attributearrayvalue($EL2,1)])
 *variableset(variable1,[variable1/2.0])
 *variableset(variable2,[@attributearrayvalue($NuL12,1)])
 *endif()
 *if([$ElasticTypeEnumField == 4 || $ElasticTypeEnumField == 5]) //
ORTHOTROPIC and ANISOTROPIC
 *variableset(variable1,[@attributearrayvalue($D1111,1)])
 *variableset(variable1,
[variable1+@attributearrayvalue($D2222,1)])
 *variableset(variable1,
[variable1+@attributearrayvalue($D3333,1)])
 *variableset(variable1,[variable1/3.0])
 *endif()
 *endif()
 *variableset(variable3,0)
 *if([$UseDensityCard == 1])
 *variableset(variable3,[@attributearrayvalue($Density,1)])
 *endif()
 *output()
*return()

*geometricrepresentations()
Starts a geometricrepresentation block.

Syntax
*geometricrepresentations (config)

Type
HyperMesh Template Command

Description
Starts a geometricrepresentation block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all geometricrepresentations with the format:

*geometricrepresentations(id,"name")

*geometricrepresentations()
 *format()
 *string("*geometricrepresentations(")
 *field(integer,id,0)
 *string(",")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.120

 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2021

*geometryoverride()
Overrides the lines option on the Export Data panel and activates lines for output.

Syntax
*geometryoverride ()

Type
HyperMesh Template Command

*groups()
Starts a group output block. The groups in the HyperMesh database whose configuration and type are
equal to the parameters are output according to the user-defined format in this block.

Syntax
*groups (configuration, type, user name)

Type
HyperMesh Template Command

Inputs
configuration

Defines the HyperMesh group that should be output using this block definition. The possible
values are:

ConfigGroup Output

1 Interface with master and slave elements

2 Interface with master elements and slave nodes

3 Interface with slave elements

4 Interface with slave nodes

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.121

ConfigGroup Output

5 Rigid walls

type
Defines the group type that should be output using this block definition. The possible values are
user-defined so that more types can be defined by the user. When groups are built, the template
file is read automatically to determine the type of the group.

user name
A 32-character string enclosed in double quotes holding the name of the group as defined by the
user. The name is used by the appropriate panels and displayed to the user for selection.

Example
Requires an *output() command at the end of the block.

*hm_features()
Starts a feature block.

Syntax
*hm_features (config)

Type
HyperMesh Template Command

Description
Starts a feature block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all features with the format:

*feature(id,"name")

*hm_features()
 *format()
 *string("*features(")
 *field(integer,id,0)
 *string(",")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.122

 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Errors
Incorrect usage results in an import error.

Version History
14.0.120

*hourglass()
Starts an hourglass block.

Syntax
*hourglass (config)

Type
HyperMesh Template Command

Description
Starts an hourglass block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all hourglasses with the format:

*hourglass(id,"name")

*hourglass()
 *format()
 *string("*hourglass(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2017.1

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.123

*if()
Used to conditionally execute branches of code.

Syntax
*if ([expression])

Type
HyperMesh Template Command

Description
Used to conditionally execute branches of code. This is useful for testing and acting on a condition. The
following operators are available:

==, = equal

!= not equal

<= less than or equal

< less than

>= greater than or equal

> greater than

% modulus

This command must be accompanied by a *endif() command at the end of the block.

Inputs
expression

Relational expression. This must be enclosed in square brackets.

Example
To output a portion of a CQUAD4 element with conditions depending on the property assignment:

*elements(104,1,"CQUAD4","")
*format()
*string("CQUAD4 ")
*field(integer,id,8)
*if([propertyid == 0])
*field(integer,collector.propertyid,8)
*else()
*field(integer,propertyid,8)
*endif()
*field(integer,node1.id,8)
*field(integer,node2.id,8)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.124

*field(integer,node3.id,8)
*field(integer,node4.id,8)
 *end()
*output()

*ignorecomment()
Sets the characters of strings which are ignored as comment lines.

Syntax
*ignorecomment ("comment_string")

Type
HyperMesh Template Command

Description
Sets the characters of lines which are ignored as comment lines. These strings are then ignored for
export/do not export of comments.

Inputs
comment_string

The complete string or the starting characters of the string.

Example
To add as comment lines that start with "**H" (**HWCOLOR COMP, **HMNAME, etc...) except
"**HM_UNSUPPORTED_CARDS_START":

*addcomment("**H")
*ignorecomment("**HM_UNSUPPORTED_CARDS_START")

Version History
11.0.101

*ignoreelemconfigtype()
Sets the characters of strings which are ignored as comment lines.

Syntax
*ignoreelemconfigtype (config, type)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.125

Description
By default, within the ANSYS profile, a check is performed during certain operations to see if the ET
type (sensor) associated with a component matches the config/type of element within the component.
This command can be used to skip that check for specific element config/types. It is applicable only for
the ANSYS user profile.

Inputs
config

Defines the element config that should be used for this command.

type
Defines the element type that should be used for this command.

Example
To ignore the ET type from element type of configuration 5 and type 0:

*ignoreelemconfigtype(5,0)

Version History
14.0.110

*include()
Includes a file from the include directory.

Syntax
*include (filename)

Type
HyperMesh Template Command

Inputs
filename

The file identified by must be in the include directory where the template is located.
*include() can be used to insert a series of template commands that are used by multiple
templates.
*include() files can reference other *include() files in the same directory, but make sure you
do not create an infinite *include() loop.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.126

*includefiles()
Starts an include file output block. The include file references in the HyperMesh database are output
according to the user-defined format in this block.

Syntax
*includefiles((solver_defined_flag1, solver_defined_flag2)

Type
HyperMesh Template Command

Inputs
solver_defined_flag1, solver_defined_flag2

Both of these flags are defined based on the solver used. For example, flag1 for Nastran and
OptiStruct represent the location of the include block. Either the include file is to be placed in the
executive control section of the data file, and so on.

Example
To place an include in the executive controls section, flag 1 is 1:

 *includefiles(1,0)
 *format()
 *string("INCLUDE '")
 *field(string,fullname,0)
 *string(')
 *end()
 *output()

*interfacecomponents()
Starts an interfacecomponents block.

Syntax
*interfacecomponents (config)

Type
HyperMesh Template Command

Description
Starts an interfacecomponents block.

This command must be accompanied by a *output() command at the end of the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.127

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all interfacecomponents with the format:

*interfacecomponents(id,"name")

*interfacecomponents()
 *format()
 *string("*interfacecomponents(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*interfacelinkings()
Starts an interfacelinkings block.

Syntax
*interfacelinkings (config)

Type
HyperMesh Template Command

Description
Starts an interfacelinkings block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all interfacelinkings with the format:

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.128

*interfacelinkings(id,"name")

*interfacelinkings()
 *format()
 *string("*interfacelinkings(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*joints()
Starts a joints block.

Syntax
*joints (config)

Type
HyperMesh Template Command

Description
Starts a joints block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all joints with the format:

*joint(id,"name")

*joint()
 *format()
 *string("*joint(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.129

Errors
Incorrect usage results in an import error.

Version History
14.0.120

*laminates()
Starts a laminate block.

Syntax
*laminates (card_image_name)

Type
HyperMesh Template Command

Description
Starts a laminate block. Laminates with a card image matching the specified card image name are
considered for the block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
card_image_name

A 32-character string enclosed in double quotes that defines the card image name of the
laminates. If specified as double quotes "", all laminates are considered for the block.

Example
To write out all laminates with the format:

*laminate(id,"name",color)

*laminates("")
*format()
*string("*laminate(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,color,0)
*string(")")
 *end()
*output()

Version History
11.0

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.130

*lines()
Starts a line output block. All of the lines in the database are output according to the user-defined
format in the block following the *lines()command.

Syntax
*lines ()

Type
HyperMesh Template Command

Example
Requires an *output() at the end of the block.

*lists()
Starts a lists block.

Syntax
*lists (config)

Type
HyperMesh Template Command

Description
Starts a lists block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all lists with the format:

*lists(id,"name")

*lists()
 *format()
 *string("*lists(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.131

*output()

Version History
2020

 *loadcols()
Starts a load collector block.

Syntax
*loadcols (card_image_name, ?idpool_name?)

Type
HyperMesh Template Command

Description
Starts a load collector block. Load collectors with a card image matching the specified card image name
are considered for the block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
card_image_name

A 32-character string enclosed in double quotes that defines the card image name of the load
collector. If specified as double quotes "", all load collectors are considered for the block.

idpool_name
An optional 32-character string enclosed in double quotes that defines the name of the ID pool
that the load collectors belongs to. If not needed, use double quotes "" or omit the argument.
The ID pool must be defined using the *defineidpool() command.

Example
To write out all load collectors with the format:

*loadcollector(id,"name",color)

*loadcols("","")
*format()
*string("*loadcollector(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,color,0)
*string(")")
 *end()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.132

*loads()
Starts a load output block. The loads in the HyperMesh database whose configuration is equal to the
parameter configuration, and whose type is equal to the parameter type are output according to the
user-defined format in this block.

Syntax
*loads (config, type, user name)

Type
HyperMesh Template Command

Inputs
config

Defines the configuration of the load that is output using this block definition and has the
following possible values:

ConfigLoad Output

0 Any load

1 Forces

2 Moments

3 Constraints

4 Pressures

5 Temperatures

6 Fluxes

8 Velocities

9 Accelerations

If the config supplied is 0 (zero), all loads of the given type are output.

type
Defines the type of load being defined. The type parameter allows users to define multiple types
of loads per configuration. If the type supplied is 0 (zero), all loads of the given config are output.

user name
Defines the name of the load being defined.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.133

Example
Requires an *output() at the end of the block.

*loadsteps()
Starts a loadsteps output block.

Syntax
*loadsteps ()

Type
HyperMesh Template Command

Example
Each loadstep contains a list of IDs for the load collectors within that step.

Requires an *output() at the end of the block.

*loopif()
Conditionally executes a block of code while a condition is true.

Syntax
*loopif (expression)

Type
HyperMesh Template Command

Inputs
expression

A relational expression.

Example
If expression evaluates to a nonzero value, then the statements contained within the loop block are
executed. The example below shows the usage of the loop:

*counterset(counter1,1)
 *loopif([counter1 <= 5])
 *end()
 *counterinc(counter1)
 *endloop()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.134

 *markfailed()
Marks an element as failed when used in the Check Elements panel (user subpanel).

Syntax
*markfailed ()

Type
HyperMesh Template Command

Description
To mark quads that have a side shorter than .1, the following commands may be used:

*elements(104,0,"","")
 *format()
 *if([shortestside < .1])
 *markfailed()
 *endif()
*output()

The command must only be used in a template file used with the user subpanel of the Check Elements
panel.

It is used to mark an element that has failed a user-defined element check (the element will be
highlighted). It can only be used within a *elements block. The element is also put in the user mark.

*masses()
Starts a mass entity block.

Syntax
*masses (config)

Type
HyperMesh Template Command

Description
Starts a mass entity block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.135

Example
To write out all mass entities with the format:

*masses(id,"name")

*masses()
 *format()
 *string("*masses(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2017.2

*materials()
Starts a material block.

Syntax
*materials (card_image_name)

Type
HyperMesh Template Command

Description
Starts a material block. Materials with a card image matching the specified card image name are
considered for the block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
card_image_name

A 32-character string enclosed in double quotes that defines the card image name of the
materials in the block. If specified as double quotes "", all materials are considered for the block.
If a *components() or *properties() block has specified a mat_card_image_name value
matching this string, the material collector to which those components or properties point is
marked.

Example
To write out all materials with the format:

*material(id,"name",color)

*materials("","")
*format()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.136

*string("*material(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,color,0)
*string(")")
 *end()
*output()

*mechanisms()
Starts a mechanisms block.

Syntax
*mechanisms (config)

Type
HyperMesh Template Command

Description
Starts a mechanisms block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out standard mechanisms and their associated objects:

*mechanisms(1)
 *format()
 *string("*MECHANISM")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()

 *bodies()
 *format()
 *string("*BODY")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()

 *joints()
 *format()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.137

 *string("*JOINT")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()

 *constraints()
 *format()
 *string("*CONSTRAINT")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()

 *positions(1)
 *format()
 *string("*POSITION")
 *end()
 *fieldright(integer,id,10)
 *fieldleft(string,name,80)
 *end()
 *output()
*output()

 *meshcontrols()
Starts a meshcontrols block.

Syntax
*meshcontrols (config)

Type
HyperMesh Template Command

Description
Starts a meshcontrols block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all meshcontrols with the format:

*meshcontrols(id,"name")

*meshcontrols()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.138

 *format()
 *string("*meshcontrols(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
14.0

*metadata()
Starts a metadata output block. All of the metadata entries in the database are output according to the
user-defined format in the block following the *metadata() command.

Syntax
*metadata ()

Type
HyperMesh Template Command

Example
Requires an *output() at the end of the output block.

*modelcheckchecks()
Starts a model check checks block.

Syntax
*modelcheckchecks (config)

Type
HyperMesh Template Command

Description
Starts a model check checks block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.139

Example
To write out all model check checks with the format:

*modelcheckchecks(id,"name")

*modelcheckchecks()
 *format()
 *string("*modelcheckchecks(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*modelcheckcorrections()
Starts a model check corrections block.

Syntax
*modelcheckcorrections (config)

Type
HyperMesh Template Command

Description
Starts a model check corrections block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all model check corrections with the format:

*modelcheckcorrections(id,"name")

*modelcheckcorrections()
 *format()
 *string("*modelcheckcorrections(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.140

 *end()
*output()

Version History
2019

*modelMOI()
Computes the inertia tensor for the global model and store the results into a table.

Syntax
*modelMOI (table)

Type
HyperMesh Template Command

Description
Computes the inertia tensor for the global model and store the results into a table. This is valid only for
LS-DYNA.

The different values are stored in this order in the table:

totalIXX

totalIYY

totalIZZ

totalIXY

totalIXZ

totalIYZ

This command must be called in the *before() section.

Inputs
table

A value between 1 and 20 indicating which of the 20 possible tables should be manipulated.

Example
To calculate the MOI values and store them in table 11:

*components("", "")
*before()
*tablenreset(11)
*modelMOI(11)
*format()
...
*after()
*string("Moment of Inertia for Model (Using Center of Gravity As Center):")
*end()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.141

*string(" --
 --")
*end()
*string(" | ")
*fieldright(real, [@nlookup(11,1)], 12)
*string(" ")
*fieldright(real, [@nlookup(11,4)], 12)
*string(" ")
*fieldright(real, [@nlookup(11,5)], 12)
*string(" |")
*end()
*string(" | ")
*fieldright(real, [@nlookup(11,4)], 12)
*string(" ")
*fieldright(real, [@nlookup(11,2)], 12)
*string(" ")
*fieldright(real, [@nlookup(11,6)], 12)
*string(" |")
*end()
*string(" | ")
*fieldright(real, [@nlookup(11,5)], 12)
*string(" ")
*fieldright(real, [@nlookup(11,6)], 12)
*string(" ")
*fieldright(real, [@nlookup(11,3)], 12)
*string(" |")
*end()
*string(" --
 --")
*end()

Version History
14.0.110

*modules()
Starts a modules block.

Syntax
*modules (config)

Type
HyperMesh Template Command

Description
Starts a modules block.

This command must be accompanied by an *output() command at the end of the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.142

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all modules with the format:

*modules(id,"name")

*modules()
 *format()
 *string("*modules(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
14.0

*nodes()
Starts a node output block. All of the nodes in the database are output according to the user-defined
format in the block following the *nodes() command.

Syntax
*nodes (configuration)

Type
HyperMesh Template Command

Inputs
configuration

Defines the type of node to output in this block. Since HyperMesh only allows one type of node,
this parameter is ignored but is allowed for future compatibility.

Example
The following commands are available to sort nodes within the template system:

*sortnodes(byinputsystem)
*sortnodes(byoutputsystem)
*sortnodes(byid)
*sortnodes(none)

The first three commands turn sorting on until it is turned off with *sortnodes(none).

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.143

This command requires an *output() at the end of the block.

*objectives()
Starts an objectives output block.

Syntax
*objectives ()

Type
HyperMesh Template Command

Example
Requires an *output() at the end of the block.

*optiresponses()
Starts an optiresponses output block.

Syntax
*optiresponses ()

Type
HyperMesh Template Command

Example
Creates both DRESP1 and DRESP2 type responses. Requires an *output() at the end of the block.

*output()
Outputs the data defined in the preceding block.

Syntax
*output ()

Type
HyperMesh Template Command

Example
Requires a preceding block definition.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.144

*outputblocks()
Starts an outputblocks block.

Syntax
*outputblocks ()

Type
HyperMesh Template Command

Example
*outputblocks contain a list of element or node IDs. An example is shown below:

*outputblocks()
 *format()
 *if([type == 1])
 *counterset(counter1,1)
 *loopif([counter1 <= idsmax])
 *pointerset(pointer1,ids,[counter1-1])
 *string("NOD: ")
 *field(integer,pointer1.pointervalue,8)
 *counterinc(counter1)
 *endloop()
 *endif()
 *if([type == 2])
 *counterset(counter1,1)
 *loopif([counter1 <= idsmax])
 *pointerset(pointer1,ids,[counter1-1])
 *string("ELE: ")
 *field(integer,pointer1.pointervalue,8)
 *counterinc(counter1)
 *endloop()
 *endif()
*output()

*outputparameterizeddata()
Specifies whether to output in parameterized or unparameterized format.

Syntax
*outputparamaterizeddata (flag)

Type
HyperMesh Template Command

Description
Specifies whether to output in parameterized or unparameterized format.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.145

Inputs
flag

0 - Output in unparameterized format
1 - Output in parameterized format

Example
To output in parameterized format:

*outputparameterizeddata(1)

Version History
14.0

*outputrequests()
Starts an outputrequests block.

Syntax
*outputrequests (config)

Type
HyperMesh Template Command

Description
Starts an outputrequests block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all outputrequests with the format:

*outputrequests(id,"name")

*outputrequests()
 *format()
 *string("*outputrequests(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.146

Version History
2020

*panels()
Starts a panels block.

Syntax
*panels (config)

Type
HyperMesh Template Command

Description
Starts a panels block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all panels with the format:

*panels(id,"name")

*panels()
 *format()
 *string("*panels(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2017.1

*parameters()
Starts a parameters block.

Syntax
*parameters (card_image_name)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.147

Type
HyperMesh Template Command

Description
Starts a parameters block.

This command must be accompanied by an *output() command at the end of the block

Inputs
card_image_name

A 32-character string enclosed in double quotes that defines the card image name of the
parameter. If specified as double quotes "", all parameters are considered for the block.

Example
To write out all parameters with the format:

*parameters(id,"name")

*parameters("")
 *format()
 *string("*parameters(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
14.0

*partsets()
Starts a partset block.

Syntax
*partsets (config)

Type
HyperMesh Template Command

Description
Starts a partset block.

This command must be accompanied by a *output() command at the end of the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.148

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all partsets with the format:

*partsets(id,"name")

*partsets()
 *format()
 *string("*partsets(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2017.1

*physicalquantites()
Starts a physicalquantity block.

Syntax
*physicalquantites (config)

Type
HyperMesh Template Command

Description
Starts a physicalquantity block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all physicalquantites with the format:

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.149

*physicalquantites(id,"name")

*physicalquantites()
 *format()
 *string("*physicalquantites(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2021

*plies()
Starts a ply block.

Syntax
*plies (card_image_name)

Type
HyperMesh Template Command

Description
Starts a ply block. Plies with a card image matching the specified card image name are considered for
the block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
card_image_name

A 32-character string enclosed in double quotes that defines the card image name of the plies. If
specified as double quotes "", all plies are considered for the block.

Example
To write out all plies with the format:

*ply(id,"name",color)

*plies("")
*format()
*string("*ply(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,color,0)
*string(")")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.150

 *end()
*output()

Version History
11.0

*plots()
Starts a plot output block. The plots in the HyperMesh database are output according to the user-
defined format in this block.

Syntax
*plots ()

Type
HyperMesh Template Command

Example
To output the IDs of the curves in a plot, the following commands should be used:

*counterset(counter1,0)
 *loop([counter1 != numberofcurves])
 *pointerset(pointer1,curves,counter1)
 *field(integer,pointer1.pointervalue,0)
 *counterinc(counter1)
*endloop()

Requires an *output() at the end of the block.

*pointerset()
Sets the initial value of a pointer.

Syntax
*pointerset (pointer number, pointer, value)

Type
HyperMesh Template Command

Inputs
pointer number

Value from pointer1 to pointer10 indicating which of the 10 possible pointers should be set to
thevalue parameter.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.151

pointer
The pointer to the data object to be accessed. Only certain data types may use pointers. These
are described in the template commands in which they are valid.

value
The value of the pointer.

Example
For example, to output all the dictionary entries for a component, the following commands could be
used while in the component block:

*counterset(counter1,0)
*loopif([counter1 != dictionarymax])
 *pointerset(pointer1,dictionary,counter1)
 *field(string,pointer1.name,0)
 *field(integer,pointer1.type,0)
 *field(string,pointer1.string,0)
 *field(real,pointer1.value,8)
 *counterinc(counter1)
*endloop()

*points()
Starts a points output block.

Syntax
*points ()

Type
HyperMesh Template Command

Example
Requires an *output() command at the end of the block.

*populatemassthicknesstable()
Populates the element mass/thickness table.

Syntax
*populatemassthicknesstable ()

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.152

Description
Populates the element mass/thickness table. This table is used to improve the performance of summary
calculations. This function is only available for "core" solver templates routinely maintained by Altair,
including Abaqus, ANSYS, LS-DYNA, MADYMO, Marc, Nastran, OptiStruct, PAM-CRASH 2G, Radioss, and
Samcef. It cannot be used with custom templates.

This command must be inside either a *components() or *elements() block and should be called in the
*before() section. It must be followed by a call to *deletemassthicknesstable().

Example
To write out the mass of every component in the format

id,"name",mass

*components("","")
*before()
*populatemassthicknesstable()
*format()
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(real,mass,0)
*end()
*after()
*deletemassthicknesstable()
*output()

Version History
11.0

*positions()
Starts a positions block.

Syntax
*positions (config)

Type
HyperMesh Template Command

Description
Starts a positions block.

This command must be accompanied by an *output() command at the end of the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.153

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all positions with the format:

*positions(id,"name")

*positions()
 *format()
 *string("*positions(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
14.0

*pretensioners()
Starts a pretensioners block.

Syntax
*pretensioners (config)

Type
HyperMesh Template Command

Description
Starts a pretensioners block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all pretensioners with the format:

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.154

*pretensioners(id,"name")

*pretensioners()
 *format()
 *string("*pretensioners(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2017.1

*properties()
Starts a property block.

Syntax
*properties (card_image_name, mat_card_image_name,?idpool_name?)

Type
HyperMesh Template Command

Description
Starts a property block. Properties with a card image matching the specified card image name are
considered for the block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
card_image_name

A 32-character string enclosed in double quotes that defines the card image name of the property.
If specified as double quotes "", all properties are considered for the block.
If a *elements() block has specified a prop_card_image_name value matching this string, the
property collector to which those elements point is marked.

mat_card_image_name
A 32-character string enclosed in double quotes that defines the name of the material that the
properties in the block require. If not needed, use double quotes "".
The name is also used to link to the *materials() command.

idpool_name
An optional 32-character string enclosed in double quotes that defines the name of the ID pool
that the properties belongs to. If not needed, use double quotes "" or omit the argument.
The ID pool must be defined using the *defineidpool() command.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.155

Example
To write out all properties with the format:

*property(id,"name",material ID,color)

*properties("","")
*format()
*string("*property(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,materialid,0)
*string(",")
*field(integer,color,0)
*string(")")
 *end()
*output()

*quote()
Writes a quotation (") character.

Syntax
*quote ()

Type
HyperMesh Template Command

*rangeadd()
Add a number to a list so that ranges can be found with @rangecount(), @rangestart(), and
@rangeadd().

Syntax
*rangeadd (number)

Type
HyperMesh Template Command

Inputs
number

The integer number to add to the list.

Example

*elements(104,0,"","")
 *format()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.156

 *rangeadd(id)
 *after()
 *counterset(counter1,1)
 *loopif([counter1 <= @rangecount()])
 *string("start of range = ")
 *field(integer,[@rangestart(counter1)],0)
 *end()
 *field(integer,[@rangeend(counter1)],0)
 *end()
 *counterinc(counter1)
 *endloop()
 *rangereset()
*output()

Use *rangeadd() to add numbers to a list. Once all numbers have been added, @rangecount() returns
the number of ranges (for example 1-5, 10-20) that are in the list. Use the functions @rangestart()
and @rangeend() to get the actual ranges.

*rangereset()
Resets the list of numbers stored with *rangeadd().

Syntax
*rangereset ()

Type
HyperMesh Template Command

Example

*elements(104,0,"","")
 *format()
 *rangeadd(id)
 *after()
 *counterset(counter1,1)
 *loopif([counter1 <= @rangecount()])
 *string("start of range = ")
 *field(integer,[@rangestart(counter1)],0)
 *end()
 *string("end of range = ")
 *field(integer,[@rangeend(counter1)],0)
 *end()
 *counterinc(counter1)
 *endloop()
 *rangereset()
*output()

Use *rangeadd() to add numbers to a list. Once all numbers have been added, @rangecount returns
the number of ranges (for example 1-5, 10-20) that are in the list. Use the functions @rangestart()
and @rangeend() to get the actual ranges. *rangereset() removes all numbers from the list.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.157

*realprecision()
Sets the number of significant figures after the decimal point for real numbers.

Syntax
*realprecision (digits)

Type
HyperMesh Template Command

Inputs
digits

The number of significant figures to be used for all real values after the command in the template
file. A zero (default) uses all available spaces in the field width.

Example
This command results in values being rounded, according to IEEE specifications, to fit in the specified
precision. Enabling the *compressreal() option truncates trailing zeros that are produced by this
setting.

*regions()
Starts a regions block.

Syntax
*regions (config)

Type
HyperMesh Template Command

Description
Starts a regions block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all regions with the format:

*regions(id,"name")

*regions()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.158

 *format()
 *string("*regions(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
14.0

*registerparameterizeddataappendstring()
Registers the string to be added before parameter names written in place of parameterized values.

Syntax
*registerparametrizeddataappendstring ("string")

Type
HyperMesh Template Command

Description
Registers the string to be added before parameter names written in place of parameterized values.

Inputs
string

The string to be added before the parameter names.

Example
In Abaqus, parameter names are written within angular brackets and are registered as:

*registerparametrizeddataappendstring("<")
*registerparametrizeddataendstring(">")

In LS-DYNA, parameter names are preceded by & and are registered as:

*registerparametrizeddataappendstring("&")

Version History
14.0

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.159

*registerparameterizeddataendstring()
Registers the string to be added after parameter names written in place of parameterized values.

Syntax
*registerparametrizeddataendstring ("string")

Type
HyperMesh Template Command

Description
Registers the string to be added after parameter names written in place of parameterized values.

Inputs
string

The string to added after the parameter names.

Examples
In Abaqus, parameter names are written within angular brackets and are registered as:

*registerparametrizeddataappendstring("<")
*registerparametrizeddataendstring(">")

In LS-DYNA, parameter names are preceded by & and are registered as:

*registerparametrizeddataappendstring("&")

Version History
14.0

*registersolvercommentsyntaxstring()
Registers the string to be added in the beginning of the solver comment lines.

Syntax
*registersolvercommentsyntaxstring ("string")

Type
HyperMesh Template Command

Description
Registers the string to be added in the beginning of the solver comment lines.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.160

Inputs
string

The string to be added in the beginning of the solver comment lines.

Example
To register the solver comment lines to start with $:

*registerparametrizeddataappendstring("$")

Version History
2020

*responses()
Starts a responses block.

Syntax
*responses (config)

Type
HyperMesh Template Command

Description
Starts a responses block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all responses with the format:

*responses(id,"name")

*responses()
 *format()
 *string("*responses(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.161

Version History
2020

*results()
Starts a results block.

Syntax
*results (config)

Type
HyperMesh Template Command

Description
Starts a results block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all results with the format:

*results(id,"name")

*results()
 *format()
 *string("*results(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*retractors()
Starts a retractors block.

Syntax
*retractors (config)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.162

Type
HyperMesh Template Command

Description
Starts a retractors block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all retractors with the format:

*retractors(id,"name")

*retractors()
 *format()
 *string("*retractors(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2017.1

*return()
Ends a function block.

Syntax
*return ()

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.163

*rigidbodies()
Starts a rigidbodies block.

Syntax
*rigidbodies (config)

Type
HyperMesh Template Command

Description
Starts a rigidbodies block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all rigidbodies with the format:

*rigidbodies(id,"name")

*rigidbodies()
 *format()
 *string("*rigidbodies(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2017.2

*rigidwalls()
Starts a rigid wall block.

Syntax
*rigidwalls (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.164

Description
Starts a rigid wall block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all rigid walls with the format:

*rigidwalls(id,"name")

*rigidwalls()
 *format()
 *string("*rigidwalls(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2017

*scalefieldwidth()
Scales the width of a field.

Syntax
*scalefieldwidth (field type, scalefactor)

Type
HyperMesh Template Command

Inputs
field type

Specifies which field type to scale. Valid values are "integer", "real", and "string".

scalefactor
The scale factor to apply to each field of field type. Typically, this value is 1 or 2.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.165

Example
To print the node IDs and globalx values with a width of 16 instead of 8:

*nodes()
 *before()
 *variableset(variable1,2)
 *scalefieldwidth(real,variable1)
 *scalefieldwidth(integer,variable1)

 *format()
 string("")
 *field(integer,id,8)
 string("")
 *end()

 string("")
 *fieldleft(real,globalx,8)
 string("")
 *end()

*output()

This command is typically used to write a deck that contains double precision numbers which have twice
the field width specified by the *field command.

*seatbeltcontrolpoints()
Starts a seatbeltcontrolpoint block.

Syntax
*seatbeltcontrolpoints (config)

Type
HyperMesh Template Command

Description
Starts a seatbeltcontrolpoint block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all seatbeltcontrolpoints with the format:

*seatbeltcontrolpoints(id,"name")

*seatbeltcontrolpoints()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.166

 *format()
 *string("*seatbeltcontrolpoints(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020

*seatbelts()
Starts a seatbelt block.

Syntax
*seatbelts (config)

Type
HyperMesh Template Command

Description
Starts a seatbelt block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all seatbelts with the format:

*seatbelts(id,"name")

*seatbelts()
 *format()
 *string("*seatbelts(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.167

*segments()
Starts a segment output block.

Syntax
*segments ()

Type
HyperMesh Template Command

Example
Requires an *endsegments() command.

*sensors()
Starts a sensors block.

Syntax
*sensors (card_image_name, ?idpool_name?)

Type
HyperMesh Template Command

Description
Starts a sensors block. Sensors with a card image matching the specified card image name are
considered for the block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
card_image_name

A 32-character string enclosed in double quotes that defines the card image name of the sensor.
If specified as double quotes "", all sensors are considered for the block.

idpool_name
An optional 32-character string enclosed in double quotes that defines the name of the ID pool
that the sensor belongs to. If not needed, use double quotes "" or omit the argument.
The ID pool must be defined using the *defineidpool() command

Example
To write out all sensors with the format:

*sensor(id,"name")

*sensors("","")
*format()
*string("*sensor(")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.168

*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(")")
 *end()
*output()

*sequences()
Starts a sequences block.

Syntax
*sequences (config)

Type
HyperMesh Template Command

Description
Starts a sequences block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all sequences with the format:

*sequences(id,"name")

*sequences()
 *format()
 *string("*sequences(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020.1

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.169

*setcollector()
Sets the current collector based on the last *pointerset() command. This is commonly used with
loadsteps. You can also use this command with sets that contain components.

Syntax
*setcollector ()

Type
HyperMesh Template Command

Example
The loadsteps entity contains the ids of loadcollectors for that step. To output the loads within each
loadcollector:

*loadsteps()
 *format()
 *string("SUBCASE")
 *field(integer,id,3)
 *end()
 *counterset(counter1,0)
 *loopif([counter1 < idsmax])
 *pointerset(pointer1,ids,counter1)
 *setcollector()
 *loads(3,1,"SPC")
 *before()
 *counterset(counter2,0)
 *format()
 *if([counter2 == 0])
 *string("SPC")
 *field(integer,pointer1.pointervalue,8)
 *end()
 *endif()
 *counterinc(counter2)
 *output()
 *counterinc(counter1)
 *endloop()
*output()

*setcurrentbagentitytype()
Sets the type of entity within a bag for which information is to be queried.

Syntax
*setcurrentbagentitytype (entity_type)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.170

Description
This command is used in the *format level of a template to set the queried entity type of the
bag to entity_type. Subsequent references to bag entity data names entitylist and entitylistmax
in the template will then be based on the entity type that was set using this command, until
*setcurrentbagentitytype is called again with a different entity_type.

Example
The following code in the HMASCII template loops through all the entity types in the database for each
bag and writes out the ids of the entities, if present:

*bags()
 *before()
 *end()
 *string("BEGIN BAGS")
 *end()
 *format()
 *string("*bags(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(",")
 *field(integer,config,0)
 *string(",")
 *field(integer,color,0)
 *string(")")
 *end()
 *if([attributesmax > 0])
 *string(" *attributesforentity(BAGS,")
 *field(integer,id,0)
 *string(",")
 *field(integer,attributesmax,0)
 *string(")")
 *end()
 *include(attribs)
 *endif()
 *counterset(counter1,1)
 *loopif([counter1 <= globalentitytypesmax])
 *setcurrentbagentitytype([@getdatabaseentitytypename(counter1)])
 *if([entitylistmax > 0])
 *end()
 *string("*bagentitytype(")
 *field(string,[@getdatabaseentitytypename(counter1)],0)
 *string(")")
 *end()
 *string("*bagentitylistmax(")
 *field(integer,entitylistmax,0)
 *string(")")
 *end()
 *counterset(counter2,0)
 *string("*bagentityidlist(")
 *loopif([counter2 < entitylistmax])
 *pointerset(pointer1,entitylist,counter2)
 *field(integer,pointer1.pointervalue,0)
 *if([counter2 < (entitylistmax - 1)])
 *string(",")
 *endif()
 *counterinc(counter2)
 *if([counter2 == entitylistmax])
 *string(")")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.171

 *end()
 *else()
 *if([counter2 % 9 == 0])
 *end()
 *endif()
 *endif()
 *endloop()
 *end()
 *endif()
 *counterinc(counter1)
 *endloop()
 *end()
 *after()
 *string("END BAGS")
 *end()
*output()

*setettypeelemtypereference()
Sets the element configuration corresponding to the ET type specified in the sensor card image.

Syntax
*setettypeelemtypereference (sensor_card_image_name, config)

Type
HyperMesh Template Command

Description
Sets the element configuration corresponding to the ET type specified in the sensor card image. This is
applicable only for ANSYS.

Inputs
sensor_card_image_name

A 32-character string enclosed in double quotes that indicates the card image name of the sensor
for which the element configuration applies.

config
The configuration number of the elements in the sensor card image.

Example

*setettypeelemtypereference("SHELL51",60)
*setettypeelemtypereference("CONTAC52",70)
*setettypeelemtypereference("PLANE53",106)
*setettypeelemtypereference("PLANE53",108)
*setettypeelemtypereference("SOLID46",208)

Version History
14.0

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.172

*setformattype()
Sets the export format type for the LS-DYNA profile.

Syntax
*setformattype (?type?)

Type
HyperMesh Template Command

Description
Sets the export format type for the LS-DYNA profile.

Inputs
type

The export format type. Valid values are:
1 - Standard format
2 - Long format
3 - I10 format
When no type is passed, the export will be based on the import deck. For instance, when
importing a long format deck, by default the export will happen in long format.

Example
To set the export format to long:

*setformattype(2)

Version History
2020

*setidmanagerexcludedidpools()
Defines list of ID pools not to be supported by ID Manager.

Syntax
*setidmanagerexcludedidpools (pool_id1, ?pool_id2?, ... , ?pool_idN?)

Type
HyperMesh Template Command

Description
Defines list of ID pools not to be supported by ID Manager.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.173

Inputs
pool_id

The IDs of the pools that are not to be supported.

Examples
To define pool number 16 and 56 to not be supported by ID Manager:

*setidmanagerexcludedidpools(16, 56)

Version History
2019

*setidmanagersupportedentitytypes()
Defines the list of entity types to be supported by ID Manager.

Syntax
*setidmanagersupportedentitytypes (entity_type_id1, ?entity_type_id2?, ..., ?entity_type_idN?)

Type
HyperMesh Template Command

Description
Defines the list of entity types to be supported by ID Manager.

Inputs
entity_type_id

The entity type IDs that are to be supported.

Examples
To define nodes (1), elems (2) and comps (3) to be supported by ID Manager:

*setidmanagersupportedentitytypes(1, 2, 3)

Version History
2019

*sets()
Starts a set block.

Syntax
*sets (?card_image_name?, ?idpool_name?,?subentity_idpool_name?)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.174

Type
HyperMesh Template Command

Description
Starts a set block. Sets with a card image matching the specified card image name are considered for
the block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
card_image_name

An optional 32-character string enclosed in double quotes that defines the card image name of
the sets in the block. If not needed, use double quotes "" or omit the argument.

idpool_name
An optional 32-character string enclosed in double quotes that defines the name of the ID pool
that the sets belong to. If not needed, use double quotes "" or omit the argument.
The ID pool must be defined using the *defineidpool() command.

subentity_idpool_name
An optional 32-character string enclosed in double quotes that defines the name of the ID pool
that the entities in the set must belong to. If not needed, use double quotes "" or omit the
argument.
The ID pool must be defined using the *defineidpool() command.

Example
To write out all sets with the format:

*set(id,"name",color,"typename",ordered)

*setid(entity 1 ID)

*setid(entity 2 ID)

...

*sets()
*format()
*string("*set(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,color,0)
*string(",")
*field(quotedstring,typename,0)
*string(",")
*field(integer,ordered,0)
*string(")")
*end()

*counterset(counter1,0)
*loopif([counter1 != idsmax])
*pointerset(pointer1,ids,counter1)
*string("*setid(")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.175

*field(integer,pointer1.pointervalue,0)
*string(")")
*end()
*counterinc(counter1)
*endloop()
*output()

*setsolverusessegmentsets()
Adds support for segment sets to a template.

Syntax
*setsolverusessegmentsets (flag)

Type
HyperMesh Template Command

Description
Adds support for segment sets to a template.

Currently supported for OptiStruct, Radioss, Abaqus, EXODUS and Nastran.

Inputs
flag

0 - Not supported
1 - Supported

Example
To enable support:

*setsolverusessegmentsets(1)

Version History
2020

*shape3ds()
Starts a shape3d block.

Syntax
*shape3ds (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.176

Description
Starts a shape3d block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all shape3ds with the format:

*shape3ds(id,"name")

*shape3ds()
 *format()
 *string("*shape3ds(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019.1

*shapes()
Starts a shape output block. All the shapes are output according to the user-defined format in this
block.

Syntax
*shapes ()

Type
HyperMesh Template Command

Example
Requires an *output() command at the end of the output block definition.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.177

*sliprings()
Starts a sliprings block.

Syntax
*sliprings (config)

Type
HyperMesh Template Command

Description
Starts a sliprings block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all sliprings with the format:

*sliprings(id,"name")

*sliprings()
 *format()
 *string("*sliprings(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2017.1

*solvermasses()
Starts a solvermasses block.

Syntax
*solvermasses (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.178

Description
Starts a solvermasses block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all solvermasses with the format:

*solvermasses(id,"name")

*solvermasses()
 *format()
 *string("*solvermasses(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*solversubmodels()
Starts a solversubmodels block.

Syntax
*solversubmodels (config)

Type
HyperMesh Template Command

Description
Starts a solversubmodels block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.179

Example
To write out all solversubmodels with the format:

*solversubmodels(id,"name")

*solversubmodels()
 *format()
 *string("*solversubmodels(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*sortelements()
Sets the order that elements are output in an *elements() block.

Syntax
*sortelements (order)

Type
HyperMesh Template Command

Description
Sets the order that elements are output in an *elements() block.

This command must be inside a standalone *elements() block (that is a block not inside another block
like *components()) and should be called in the *before() section.

Inputs
order

Valid values are:
bycomponentid - Ordering is performed based on component ID.
byid - Ordering is performed by ID.
bymaterialid - Ordering is performed based on material ID.
bypropertyid - Ordering is performed based on property ID.
none - No ordering is performed.

Example
To output elements in order based on material ID:

*elements(0,0,"","")
 *before()
 *variableset(variable1,0)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.180

 *sortelements(bymaterialid)
 *format()
 *if([variable1 != collector.materialid])
 *string("Elements in material")
 *field(integer,collector.materialid,0)
 *end()
 *variableset(variable1,collector.materialid)
 *endif()
 *string("id = ")
 *field(integer,id,0)
 *end()
*output()

To output elements in order based on ID:

*elements(0,0,"","")
 *before()
 *sortelements(byid)
 *format()
 *string("id = ")
 *field(integer,id,0)
 *end()
*output()

*sortentity()
Changes the order that entities are output in the corresponding *entity() block.

Syntax
*sortentity (entity_type, order)

Type
HyperMesh Template Command

Description
Changes the order that entities are output in the corresponding *entity() block.

Currently only supported for the

Inputs
entity_type

The type of entity to sort.

order
Valid values are:
byid - Ordering is performed based on ID
none - No ordering is performed

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.181

Example
To output parameters based on their ID:

*sortentity(parameters,byid)
*parameters()
 *format()
 *string("*parameter(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020

*sortloads()
Changes the order that loads are output in the *loads() block.

Syntax
*sortloads (order)

Type
HyperMesh Template Command

Inputs
order

Valid values are:
bycomp1 - Ordering is performed based on component 1.
bycomp2 - Ordering is performed based on component 2.
bycomp3 - Ordering is performed based on component 3.
bycomp4 - Ordering is performed based on component 4.
bycomp5 - Ordering is performed based on component 5.
bycomp6 - Ordering is performed based on component 6.
bycomps - Ordering is performed by all components.
none - No ordering is performed.

Example
The following example outputs all forces in the same x direction, followed by the same y direction and
then the same z direction:

*loads(1,0,"")
 *sortloads(bycomp1)
 *before()
 *variableset(variable1,-999999)
 *format()
 *if([comp1 != variable1])

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.182

 *end() *end()
 *string("FORCE x = ") *field(real,comp1,0) *end()
 *variableset(variable1,comp1)
 *endif()
 *string(" ") *field(integer,id,0) *string(" ")
 *after()
 *end()
*output()

*loads(1,0,"")
 *sortloads(bycomp2)
 *before()
 *variableset(variable1,-999999)
 *format()
 *if([comp2 != variable1])
 *end() *end()
 *string("FORCE y = ") *field(real,comp2,0) *end()
 *variableset(variable1,comp2)
 *endif()
 *string(" ") *field(integer,id,0) *string(" ")
 *after()
 *end()
*output()

*loads(1,0,"")
 *sortloads(bycomp3)
 *before()
 *variableset(variable1,-999999)
 *format()
 *if([comp3 != variable1])
 *end() *end()
 *string("FORCE z = ") *field(real,comp3,0) *end()
 *variableset(variable1,comp3)
 *endif()
 *string(" ") *field(integer,id,0) *string(" ")
 *after()
 *end() *end()
*output()

*sortloadsteps()
Changes the order that loadsteps are output in a *loadsteps() block.

Syntax
*sortloadsteps (sort type)

Type
HyperMesh Template Command

Inputs
sort type

byid sort loadsteps by ID

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.183

none sorting is not performed

Example
The following example outputs all loadsteps by ID:

*loadsteps(1,0,"")
 *before()
 *sortloadsteps(byid)
 *format()
 *string("Loadstep ID")
 *field(real,id,0)
 *end()
*output()

*sortnodes()
Sets the order that nodes are output in a *nodes() block.

Syntax
*sortnodes (order)

Type
HyperMesh Template Command

Description
Sets the order that nodes are output in a *nodes() block.

This command must be inside a standalone *nodes() block (that is a block not inside another block like
*components()) and should be called in the *before() section.

Inputs
order

Valid values are:
byid - Ordering is performed by ID.
byinputsystem - Ordering is performed based on input system ID.
byoutputsystem - Ordering is performed based on output system ID.
bysurfaceid - Ordering is performed based on surface ID.
none - No ordering is performed.

Example
To output nodes in order based on their ID:

*nodes()
 *before()
 *sortnodes(byid)
 *format()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.184

 *string("id = ")
 *field(integer,id,0)
 *end()
*output()

*sortsets()
Sets the order that sets are output in a *sets() block.

Syntax
*sortsets (order)

Type
HyperMesh Template Command

Description
Sets the order that sets are output in a *sets() block.

Inputs
order

Valid values are:
byid - Ordering is performed by ID.
none - No ordering is performed.

Example
To output elements in order based on ID:

*sets()
 *sortsets(byid)
 *format()
 *string("id = ")
 *field(integer,id,0)
 *end()
*output()

Version History
14.0

*specialidruletoignoreincomingids()
Sets an ID pool to ignore incoming IDs for when there is an ID range defined.

Syntax
*specialidruletoignoreincomingids (entity_type, pool_id)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.185

Type
HyperMesh Template Command

Description
Sets an ID pool to ignore incoming IDs for when there is an ID range defined.

This is applicable for entities without and ID definition in the deck.

Inputs
entity_type

The type of entity to consider.

pool_id
The solver ID pool number to use.

Example
To ignore the incoming element IDs on the CONSTRAINED_NODAL_RIGIDBODY_IDPOOL ID pool (13) in
the LS-DYNA user profile:

*specialidruletoignoreincomingids(elements, 13)

Version History
2017

*string()
Outputs a string to the output file.

Syntax
*string (string)

Type
HyperMesh Template Command

Inputs
string

A string of characters. If the string contains a space, an asterisk, or a comma, the string must be
enclosed by double quotes.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.186

*stringtablereset()
Resets the string lookup table.

Syntax
*stringtablereset ()

Type
HyperMesh Template Command

*stringtablestore()
Stores an entry into the string lookup table.

Syntax
*stringtablestore (key, value)

Type
HyperMesh Template Command

Inputs
key

Assigned to a string lookup table entry and is used by the @stringlookup() function to find
stored entries. key can be a data name or a literal string enclosed in double quotes.

value
The value assigned to an entry in the string lookup table and is returned by @stringlookup().

Example
The example below stores the string shells in the string lookup table with a value of 10:

*stringtablestore("shells",10)

The example below saves component names with a value of 1 in the string table:

*components("","")
*format()
*stringtablestore(name,1)
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.187

*stringwithcomments()
Outputs a string field name and string to the output file. The field name is written just above the string
line.

Syntax
*stringwithcomments (field_name, string)

Type
HyperMesh Template Command

Description
Outputs a string field name and string to the output file. The field name is written just above the string
line.

Inputs
field_name

A string of characters. If the string contains a space, an asterisk, or a comma, the string must be
enclosed by double quotes. If the string name length is less than the width, spaces are appended
after the string. If the string name length is more than the width, the name is truncated such that
the length is equal to width.

string
A string of characters. If the string contains a space, an asterisk, or a comma, the string must be
enclosed by double quotes.

Example
To write the string field "My field" with the string "My string":

*stringwithcomments("My field","My string")

Version History
2020

*structuralproperties()
Starts a structuralproperty block.

Syntax
*structuralproperties (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.188

Description
Starts a structuralproperty block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all structuralproperties with the format:

*structuralproperties(id,"name")

*structuralproperties()
 *format()
 *string("*structuralproperties(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019.1

*studies()
Starts a studies block.

Syntax
*studies (config)

Type
HyperMesh Template Command

Description
Starts a studies block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.189

Example
To write out all studies with the format:

*studies(id,"name")

*studies()
 *format()
 *string("*studies(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020

*subsystemconfigurations()
Starts a subsystemconfigurations block.

Syntax
*subsystemconfigurations (config)

Type
HyperMesh Template Command

Description
Starts a subsystemconfigurations block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all subsystemconfigurations with the format:

*subsystemconfigurations(id,"name")

*subsystemconfigurations()
 *format()
 *string("*subsystemconfigurations(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.190

 *end()
*output()

Version History
2020

*subsystems()
Starts a subsystems block.

Syntax
*subsystems (config)

Type
HyperMesh Template Command

Description
Starts a subsystems block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all subsystems with the format:

*subsystems(id,"name")

*subsystems()
 *format()
 *string("*subsystems(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.191

*subsystemsets()
Starts a subsystemsets block.

Syntax
*subsystemsets (config)

Type
HyperMesh Template Command

Description
Starts a subsystemsets block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all subsystemsets with the format:

*subsystemsets(id,"name")

*subsystemsets()
 *format()
 *string("*subsystemsets(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020

*surfaces()
Starts a surface output block.

Syntax
*surfaces ()

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.192

Example
Requires an *output() command at the end of the block.

*symmetrypivots()
Starts a symmetrypivot block.

Syntax
*symmetrypivots (config)

Type
HyperMesh Template Command

Description
Starts a symmetrypivot block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all symmetrypivots with the format:

*symmetrypivots(id,"name")

*symmetrypivots()
 *format()
 *string("*symmetrypivots(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019.1

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.193

*systcols()
Starts a system collector output block.

Syntax
*systcols (name)

Type
HyperMesh Template Command

Inputs
name

The card image name with which to filter the scanned system collectors.

Example
Requires an *output() at the end of the block.

*systems()
Starts a systems block.

Syntax
*systems ()

Type
HyperMesh Template Command

Description
Starts a systems block.

This command must be accompanied by an *output() command at the end of the block.

Example
To write out all systems with the format:

*system(id,type)

*systems()
*format()
*string("*system(")
*field(integer,id,0)
*string(",")
*field(integer,type,0)
*string(")")
*end()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.194

*tablenreset()
Resets the nth lookup table.

Syntax
*tablenreset (table)

Type
HyperMesh Template Command

Inputs
table

A value between table1 and table20 indicating which of the 20 possible tables should be
manipulated.

*tablenstore()
Stores an entry in the nth lookup table.

Syntax
*tablenstore (table, key, value)

Type
HyperMesh Template Command

Inputs
table

A value between table1 and table20 indicating which of the 20 possible tables should be
manipulated.

key
Assigned to a lookup table entry and is used by the @nlookup() function to find stored entities.

value
The value assigned to an entry in the lookup table and is returned by @nlookup().

*tablereset()
Resets the lookup table.

Syntax
*tablereset ()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.195

Type
HyperMesh Template Command

*tables()
Starts a tables block.

Syntax
*tables (card_image_name, ?idpool_name?)

Type
HyperMesh Template Command

Description
Starts a tables block. Tables with a card image matching the specified card image name are considered
for the block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
card_image_name

A 32-character string enclosed in double quotes that defines the card image name of the table. If
specified as double quotes "", all tables are considered for the block.

idpool_name
An optional 32-character string enclosed in double quotes that defines the name of the ID pool
that the table belongs to. If not needed, use double quotes "" or omit the argument.
The ID pool must be defined using the *defineidpool() command.

Example
To write out all tables with the format:

*table(id,"name",rows,columns)

*tables("","")
*format()
*string("*table(")
*field(integer,id,0)
*string(",")
*field(quotedstring,name,0)
*string(",")
*field(integer,rows,0)
*string(",")
*field(integer,columns,0)
*string(")")
*end()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.196

Version History
11.0

*tablestore()
Stores an entry in the lookup table.

Syntax
*tablestore (key, value)

Type
HyperMesh Template Command

Inputs
key

Assigned to a lookup table entry and is used by the @lookup() function to find stored entries.

value
The value assigned to an entry in the lookup table and is returned by @lookup().

*terminations()
Starts a termination block.

Syntax
*terminations (config)

Type
HyperMesh Template Command

Description
Starts a termination block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all terminations with the format:

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.197

*terminations(id,"name")

*terminations()
 *format()
 *string("*terminations(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2019

*text()
Starts a block that contains text.

Syntax
*text ()

Type
HyperMesh Template Command

Example
Requires an *output command at the end of the block.

This block provides an easy method of outputting a series of strings.

*timestepcontrols()
Starts a timestepcontrol block.

Syntax
*timestepcontrols (config)

Type
HyperMesh Template Command

Description
Starts a timestepcontrol block.

This command must be accompanied by a *output() command at the end of the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.198

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all timestepcontrols with the format:

*timestepcontrols(id,"name")

*timestepcontrols()
 *format()
 *string("*timestepcontrols(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2021

*titles()
Starts a title output block.

Syntax
*titles ()

Type
HyperMesh Template Command

Example
Requires an *output at the end of the output block definition.

*transformations()
Starts a transformations block.

Syntax
*transformations (config)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.199

Description
Starts a transformations block.

This command must be accompanied by an *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all transformations with the format:

*transformations(id,"name")

*transformations()
 *format()
 *string("*transformations(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
14.0

*uservariableset()
Sets a user variable to a specific value.

Syntax
*uservariableset (variable, value)

Type
HyperMesh Template Command

Inputs
variable

A user-defined variable. The name must begin with ' # '.

value
The value of the variable.

Example

*uservariableset("#YOUNG_MODUL_E", 0)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.200

*variableset()
Sets a variable to a specific value.

Syntax
*variableset (variable, value)

Type
HyperMesh Template Command

Inputs
variable

A value from variable1 to variable20 indicating which of the 20 possible variables should be set to
the next parameter.

value
The value of the variable.

Example
Variables can be used to hold real or integer values. For example, to add the value of variable5 to the
current value of variable1, the following command could be used:

*variableset(variable1,[variable1+variable5])

*vectorcols()
Starts a vector collector output block.

Syntax
*vectorcols (name)

Type
HyperMesh Template Command

Inputs
name

Vector collectors with this card image name will be output.
Used as a key to distinguish different types of vector collectors.

Example
Requires an *output command at the end of the block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.201

*vectors()
Starts a vectors block.

Syntax
*vectors ()

Type
HyperMesh Template Command

Description
Starts a vectors block.

This command must be accompanied by an *output() command at the end of the block.

Example
To write out all vectors with the format:

*vectorentity(id,systemid,basenodeid,farnodeid,xcomp,ycomp,zcomp,magnitude)

*vectors()
*format()
*string(" *vectorentity(")
*field(integer,id,0)
*string(",")
*field(integer,systemid,0)
*string(",")
*field(integer,basenodeid,0)
*string(",")
*if([farnodeid > 0])
*field(integer,farnodeid,0)
*string(", 0.0, 0.0, 0.0, 0.0")
*else()
*field(integer,0,0)
*string(",")
*field(real,xcomp,8)
*string(",")
*field(real,ycomp,8)
*string(",")
*field(real,zcomp,8)
*string(",")
*field(real,magnitude,8)
*endif()
*output()

*vectortablereset()
Resets the vector lookup table.

Syntax
*vectortablereset (type, tolerance)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.202

Type
HyperMesh Template Command

Inputs
type

The type of the vector lookup table. This determines how the vectors in the lookup table are
compared against the key values sent by the @vectorlookup() function. Set this to 0, if the
vectors represent node locations in space and the distance between the two nodes is the criteria
for vectors being equal. Set this to 1, if the vectors represent vectors and the angle between the
two vectors is the criteria for vectors being equal.

tolerance
The tolerance used to determine if a vector in the lookup table is equal to a key vector.

*vectortablestore()
Stores an entry into the vector lookup table.

Syntax
*vectortablestore (key, x comp, y comp, z comp, value)

Type
HyperMesh Template Command

Inputs
key

The key assigned to the lookup table entry. This is used by the @vectorlookup() function to find
stored entries.

x comp
The x component of the vector assigned to a lookup table entry. This is used by the
@vectorlookup() function to find stored entries.

y comp
The y component of the vector assigned to a lookup table entry. This is used by the
@vectorlookup() function to find stored entries.

z comp
The z component of the vector assigned to a lookup table entry. This is used by the
@vectorlookup() function to find stored entries.

value
The value assigned to an entry in the lookup table. This value is returned by @vectorlookup().

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.203

*weldlines()
Starts a weldline block.

Syntax
*weldlines (config)

Type
HyperMesh Template Command

Description
Starts a weldline block.

This command must be accompanied by a *output() command at the end of the block.

Inputs
config

An integer that defines the config of entities in the block. If not specified, all entities are
considered for the block.

Example
To write out all weldlines with the format:

*weldlines(id,"name")

*weldlines()
 *format()
 *string("*weldlines(")
 *field(integer,id,0)
 *string(",")
 *field(quotedstring,name,0)
 *string(")")
 *end()
*output()

Version History
2020

*writegeometry()
Outputs the Altair geometry database in an internal ASCII format.

Syntax
*writegeometry (string)

Type
HyperMesh Template Command

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.204

Inputs
string

A small string to be inserted at the beginning of each line to serve as a comment character.

Example
This format is designed to be read in with the hminlib function HM_writegeomdata().

*writenamedbuffer()
Copies the content from an include file to the current output file.

Syntax
*writenamedbuffer ("name")

Type
HyperMesh Template Command

Description
Copies the content from an include file to the current output file.

Inputs
name

The short name of an include file whose content needs to be copied to current output file.

Examples
To output the contents of include "front" to the current output file:

*writenamedbuffer("front")

Version History
2019

Deprecated Solver Template Commands
The list of deprecated solver template commands, and the new commands to use.

Deprecated Commands New Commands to Use

*cubiclines()

*optitableentrs() *tables()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.205

Undocumented Solver Template Commands
The list of undocumented solver template commands.

*assigndictionarytogroup()

*attribute()

*beamsect_attribid()

*collisions()

*connectors()

*ddvals()

*defineidpool()

*dobjrefs()

*domains()

*elementorient2d()

*ellipsoids()

*getcardthicknessproc()

*handles()

*includeoffsetvalues()

*mbjoints()

*mbplanes()

*multibodies()

*opticonstraints()

*opticontrols()

*optidscreens()

*registerparametrizeddataappendstring()

*selectbyidproc()

*setcardthicknessproc()

*setelementcolorbymatsmethod()

*setelementcolorbypropsmethod()

*setoffsetinfo()

*setpropertyelementreference()

*sortdictionarynames()

*summaryrowcol()

*symmetrys()

*tags()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.206

*treataslocal()

*writeconnectors()

1.3.3 Solver Template Functions

@acos()
Trigonometric arc cosine of x, the result is expressed in radians between 0 and pp.

Syntax
@acos (x)

Type
HyperMesh Template Function

Inputs
x

Value of type real.

@activateNlgeomImpdyn()
Returns 1 if the environment variable HM_ACTIVATE_NLGEOM_IMPDYN is set to YES.

Syntax
@activateNlgeomImpdyn()

Type
HyperMesh Template Function

Description
Returns 1 if the environment variable HM_ACTIVATE_NLGEOM_IMPDYN is set to YES.

Examples
Remove NLGEOM and IMPDYN from ANLYSIS TYPE:

*menuif([@activateNlgeomImpdyn()])
 *menufield(TYPE,string,$NAST_ANALYSIS_TYPE,8)
 *menulegalvalue(STATICS)
 *menulegalvalue(MODES)
 *menulegalvalue(BUCK)
 *menulegalvalue(DFREQ)
 *menulegalvalue(MFREQ)
 *menulegalvalue(MBD)
 *menulegalvalue(DTRAN)
 *menulegalvalue(MTRAN)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.207

 *menulegalvalue(DFOUR)
 *menulegalvalue(MFOUR)
 *menulegalvalue(MCEIG)
 *menulegalvalue(HEAT)
 *menulegalvalue(FATIGUE)
 *menulegalvalue(NLGEOM)
 *menulegalvalue(NLSTAT)
 *menulegalvalue(RSPEC)
 *menulegalvalue(EXPDYN)
 *menulegalvalue(IMPDYN)
 *menulegalvalue(SUBCOM)
 *menulegalvalue(NLHEAT)
 *menulegalvalue(RANDOM)
*menuelse()
 *menufield(TYPE,string,$NAST_ANALYSIS_TYPE,8)
 *menulegalvalue(STATICS)
 *menulegalvalue(MODES)
 *menulegalvalue(BUCK)
 *menulegalvalue(DFREQ)
 *menulegalvalue(MFREQ)
 *menulegalvalue(MBD)
 *menulegalvalue(DTRAN)
 *menulegalvalue(MTRAN)
 *menulegalvalue(DFOUR)
 *menulegalvalue(MFOUR)
 *menulegalvalue(MCEIG)
 *menulegalvalue(HEAT)
 *menulegalvalue(FATIGUE)
 *menulegalvalue(NLSTAT)
 *menulegalvalue(RSPEC)
 *menulegalvalue(EXPDYN)
 *menulegalvalue(SUBCOM)
 *menulegalvalue(NLHEAT)
 *menulegalvalue(RANDOM)
*menuendif()

Errors
None.

Version History
2019

@allowduplicateids()
Returns 1 if the allow duplicate IDs option is enabled via *allowduplicateids, 0 otherwise.

Syntax
@allowduplicateids ()

Type
HyperMesh Template Function

Description
Returns 1 if the allow duplicate IDs option is enabled via *allowduplicateids, 0 otherwise.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.208

Example

*if([@allowduplicateids() ==0]) //do not allow duplicate IDs
*string("#Data1")
*end()
*endif()

*if([@allowduplicateids() ==1]) //allow duplicate IDs
*string("#Data2")
*end()
*endif()

Version History
11.0.130

@asin()
Trigonometric arc sine of x, the result is expressed in radians between -pp/2 and pp/2.

Syntax
@asin (x)

Type
HyperMesh Template Function

Inputs
x

Value of type real.

@atan()
Trigonometric arc tangent of x, the result is expressed in radians between -pp/2 and pp/2.

Syntax
@atan (x)

Type
HyperMesh Template Function

Inputs
x

Value of type real.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.209

@atan2()
Trigonometric arc tangent of x/y, with the result is expressed in radians between -pp and pp.

Syntax
@atan2 (x, y)

Type
HyperMesh Template Function

Inputs
x

Value of type real, and should be expressed in radians.

y
Value of type real, and should be expressed in radians.

@attributearray2dcols()
Returns the number of columns in a 2D array attribute.

Syntax
@attributearray2dcols (attribute)

Type
HyperMesh Template Function

Inputs
attribute

The name of the attribute (must start with '$').

@attributearray2drows()
Returns the number of rows in a 2D array attribute.

Syntax
@attributearray2drows (attribute)

Type
HyperMesh Template Function

Inputs
attribute

The name of the attribute (must start with '$').

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.210

@attributearray2dvalue()
Returns the value of a 2D array attribute.

Syntax
@attributearray2dvalue (attribute, row, column)

Type
HyperMesh Template Function

Inputs
attribute

The name of the attribute (must start with '$').

row
The row number (starting at 1).

column
The column number (starting at 1).

@attributearraylength()
Returns the length of a 1D array attribute.

Syntax
@attributearraylength (attribute)

Type
HyperMesh Template Function

Inputs
attribute

The name of the attribute (must start with '$').

@attributearrayvalue()
Returns the value of 1D array attribute.

Syntax
@attributearrayvalue (attribute, index)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.211

Inputs
attribute

The name of the attribute (must start with '$').

index
Index into the array (starting at 1).

@attributearrayvalueinternalid()
Returns the internal ID of a 1D array attribute.

Syntax
@attributearrayvalueinternalid (attribute, index)

Type
HyperMesh Template Function

Description
Returns the internal ID of a 1D array attribute.

Inputs
attribute

The name of the attribute to query, starting with $.

index
The index into the attribute array, starting at 1.

Examples
To get the entity ID for attribute $Test at index 3:

@attributearrayvalueinternalid($Test, 3)

Version History
2019

@attributeindexarray2dcols()
Returns the number of rows for a 2D array attribute on an entity.

Syntax
@attributeindexarray2dcols (<entity index>)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.212

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

@attributeindexarray2drows()
Returns the number of rows for a 2D array attribute on an entity.

Syntax
@attributeindexarray2drows (entity index)

Type
HyperMesh Template Function

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

@attributeindexarray2dvalue()
Returns the value of a 2D array attribute on an entity.

Syntax
@attributeindexarray2dvalue (entity index, row, col)

Type
HyperMesh Template Function

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

row
Indices into the attribute array (both start at 1).

col
Indices into the attribute array (both start at 1).

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.213

@attributeindexarraylength()
Returns the length of a 1D array attribute on an entity.

Syntax
@attributeindexarraylength (entity index)

Type
HyperMesh Template Function

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

@attributeindexarrayvalue()
Returns the value of a 1D array attribute on an entity.

Syntax
@attributeindexarrayvalue (entity index, array index)

Type
HyperMesh Template Function

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

array index
The index into the attribute array (starting at 1).

@attributeindexbehavior()
Returns the behavior of an attribute on an entity.

Syntax
@attributeindexbehavior (entity index)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.214

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

@attributeindexentityid()
Returns the entity ID of an entity attribute on an entity.

Syntax
@attributeindexentityid (entity index)

Type
HyperMesh Template Function

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

@attributeindexentitytype()
Returns the entity type (number) of an entity attribute on an entity.

Syntax
@attributeindexentitytype (entity index)

Type
HyperMesh Template Function

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

@attributeindexentitytypename()
Returns the entity type (string) of an entity attribute on an entity.

Syntax
@attributeindexentitytypename (entity index)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.215

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

@attributeindexidentifier()
Returns the identifier of an attribute on an entity.

Syntax
@attributeindexidentifier (entity index)

Type
HyperMesh Template Function

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

@attributeindexsolver()
Returns the solver of an attribute on an entity.

Syntax
@attributeindexsolver (entity index)

Type
HyperMesh Template Function

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

@attributeindexstatus()
Returns the status of an attribute on an entity.

Syntax
@attributeindexstatus (entity index)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.216

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

@attributeindextype()
Returns the type of attribute on an entity.

Syntax
@attributeindextype (index)

Type
HyperMesh Template Function

Inputs
index

The index of the attribute owned by the current entity (starting at 1). The return types are:

1 integer

2 double

3 string

4 1D integer array

5 1D double array

6 entity

7 (not supported)

8 (not supported)

9 2D integer array

10 2D double array

11 string array

12 1D entity array

13 2D entity array

Example
If you want to print the types of all attributes on nodes:

*nodes()
*format()
 *counterset(counter1,1)
 *loopif([counter1 <= attributesmax])
 *field(integer,[@attributeindextype(counter1)],5)
 *end()
 *coutnerinc(counter1)
 *endloop()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.217

@attributeindexvalue()
Returns the value of an attribute on an entity.

Syntax
@attributeindexvalue (entity index)

Type
HyperMesh Template Function

Inputs
entity index

The index of the attribute owned by the current entity (starting at 1).

@attributereferencecount()
Returns the number of times an entity is referenced by an attribute.

Syntax
@attributereferencecount (entity type, id)

Type
HyperMesh Template Function

Inputs
entity type

The type of entity referenced.

id
The entity ID.

Example
If you want to output only curves that are referenced, such as by a material or load, use an *if
statement as follows:

*curves()
 *format()
 *if([@attributereferencecount(curves,id) > 0)])
 *string("Load Curve #")
 *field(integer,id,0)
 *end()
 *endif()
*output()

The block above writes out only referenced curves, and those generated via post-processing operations
are omitted (if they are not pointed to by an attribute).

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.218

@attributesmaxforsolver()
Returns the number of attributes on the current entity that belong to a solver.

Syntax
@attributesmaxforsolver (solver)

Type
HyperMesh Template Function

Inputs
solver

The solver number. This function will count the number of attributes that are used for 'solver'. A
result of zero indicates that there is no card image for 'solver' on the current entity.

Example

*nodes()
 *format()
 *uservariableset(#max,[@attributesmaxforsolver(1)])
 *if([#max != 0])
 *string("Node ")
 *field(integer,id,0)
 *string(" contains ")
 *field(integer,#max,0)
 *string(" nastran attributes")
 *end()
 *endif()
*output()

@autocreateproperty()
Returns the status of the "auto create property" export option.

Syntax
@autocreateproperty ()

Type
HyperMesh Template Function

Description
Returns 1 if the "auto create property" export option is enabled via *feoutputwithdata, 0 otherwise.

Example

*if([@autocreateproperty() ==0]) //do not export unresolved IDs
*string("#Data1")
*end()
*endif()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.219

*if([@autocreateproperty() ==1]) //export unresolved IDs
*string("#Data2")
*end()
*endif()

Version History
13.0

@checkfile()
Checks for a file.

Syntax
@checkfile (file name)

Type
HyperMesh Template Function

Inputs
file name

File name to be checked.

Example

*text()
 *if([@checkfile(\tmp\file)=1])
 *string("file exists")
 *else()
 *string("file does not exist")
 *endif()
*output()

Return 1 if the file exists. On a PC, use backslashes for the path (\tmp\file). On Unix, use forward
slashes for the path (/tmp/file).

@checkmergeinclude()
Returns the state of the "merge include" export option.

Syntax
@checkmergeinclude ()

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.220

Description
Returns 1 if the "merge include" export option is enabled via *feoutputmergeincludefiles, 0
otherwise.

Example

*if([@checkmergeinclude() ==0]) //do not merge include
*string("#Data1")
*end()
*endif()

*if([@checkmergeinclude() ==1]) //merge include
*string("#Data2")
*end()
*endif()

Version History
11.0.130

@compressNodeElems()
Returns 0 if HM_NODEELEMS_SET_COMPRESS_SKIP is passed via *feoutputwithdata.

Syntax
@compressNodeElems ()

Type
HyperMesh Template Function

Description
Returns 0 if HM_NODEELEMS_SET_COMPRESS_SKIP is passed via *feoutputwithdata.

Example

*if([@compressNodeElems()])
// counter7 is 1 that means for resp. type we have to compress node/elems
*counterset(counter7,1)
*counterset(counter1,0)
*loopif([counter1 < idsmax])
*pointerset(pointer1,ids,counter1)
*rangeadd(pointer1.pointervalue)
*counterinc(counter1)
*endloop()
*counterset(counter1,[@rangecount()])
*counterset(counter2,0)
*counterset(counter3,0)
*counterset(counter4,0)
*counterset(counter5,0)
*counterset(counter6,0)
*counterset(counter8,0)
*if([counter1 > 0])
*loopif([counter2 < counter1])

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.221

*counterset(counter3,[@rangestart(counter2+1)])
*counterset(counter4,[@rangeend(counter2+1)])
// Store ids
*if([counter3==counter4])
*tablestore(counter6,counter3)
*counterinc(counter6)
*endif()
*if([(counter3+1)==counter4])
*tablestore(counter6,counter3)
*counterinc(counter6)
*tablestore(counter6,counter4)
*counterinc(counter6)
*endif()
//Write Ranges first
*if([counter4>(counter3+1)])
// Check if it is first line or next continuation line
*if([counter8==1])
*end()
*string("+ ")
*endif()
*fieldleft(integer,counter3,8)
*string(" THRU ")
*fieldleft(integer,counter4,8)
*counterset(counter8,1)
*endif()
*counterinc(counter2)
*endloop()
// Write ids
*if([counter6>=1])
*counterset(counter9,2)
// Check if it is first line or next continuation line
*if([counter8==1])
*counterset(counter9,0)
*endif()
*loopif([counter5 < counter6])
*if([(counter9 % 8) == 0])
*end()
*string("+ ")
*endif()
*fieldleft(integer,[@lookup(counter5)],8)
*counterinc(counter5)
*counterinc(counter9)
*endloop()
*tablereset()
*endif()
*endif()
*rangereset()
*if([counter1== 0])
*end()
*endif()
*endif()

Version History
14.0.110

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.222

@controlcardattributedefined()
Returns 1 if an attribute exists, 0 otherwise.

Syntax
@controlcardattributedefined (ctrl card name, attribute name)

Type
HyperMesh Template Function

Inputs
ctrl card name

attribute name

Example
If a Control Card or attribute is not defined, a 0 is returned.

@cos()
Trigonometric cosine of x, where x is expressed in radians.

Syntax
@cos (x)

Type
HyperMesh Template Function

Inputs
x

A value of type real.

@count()
Counts the entities in the database.

Syntax
@count (entity type, config, type)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.223

Inputs
entity type

The type of entity to be counted. This parameter may be set to any of the entities in the
database.

config
The configuration number of the entities to be counted. This parameter is used only if entity
type is set to elements or loads. If set to zero, the entities are counted regardless of their
configuration.

type
The type number of the entities to be counted. This parameter is used only if entity type is set to
elements. If set to zero, all of the entities are counted regardless of their type.

Example
If the displayed option is selected (active) on the Export Data panel, the value returned by @count()
includes only those entities that are currently displayed.

@defaultstatus()
Returns the default status of an attribute.

Syntax
@defaultstatus (attribute name)

Type
HyperMesh Template Function

Example
If the attribute is set to the default value (grayed out in the card previewer), the function returns 1;
otherwise, it returns 0.

@defined()
Tests to see if a dictionary item or an attribute is defined.

Syntax
@defined (dictionary item|attribute_name)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.224

Inputs
dictionary item

The name of a dictionary item. This function returns 1 if the dictionary item is active or 0 if the
dictionary item is not active. If the dictionary item does not exist, the function returns 0.

attribute_name
The name of the attribute.

Example
This function allows dictionary items to be set as a toggle that you can turn off and on. During
translation, @defined() can be used to see if the item has been toggled on or off.

If the attribute with the given name is defined on this entity, the function returns 1; otherwise,
it returns 0. If it cannot find the attribute on the current entity, @defined will also check the
dictionaries.hm_defined does not check the dictionaries because the dictionaries cannot be accessed
outside the template.

@dofs()
Extracts individual degrees of freedom from an integer and returns the status.

Syntax
@dofs (dof, position)

Type
HyperMesh Template Function

Inputs
dof

Generally an integer beam end release code that returns 1 or 0 (on or off) if the integer in
position is contained within the dof field.

position

Example

@dofs(123,1) = 1, @dofs(456,1) = 0

@elemcountperinclude()
Returns the number of elements of a specific configuration and type for a specific component being
exported to an include file.

Syntax
@elemcountperinclude (entity_type, config, type, include_id,component_id)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.225

Type
HyperMesh Template Function

Description
This function returns the number of elements of a specific configuration and type for a specific
component being exported to an include file.

Inputs
entity type

The type of entity to be counted. Currently, this is restricted to be only elements.

config
The configuration of the elements to be counted. If set to zero, entities are counted regardless of
their configuration.

type
The type of the elements to be counted. If set to zero, entities of the specified config are counted
regardless of their type.

include_id
The ID of the include file.

component_id
The ID of the component.

Example
To query the elements of config 104 and type 1 in include 1 and component 100:

*variableset(variable1,[@elemcountperinclude(104,1,1,100)])

Version History
14.0

@entitygettype()
Returns the user-assigned entity type. The user-assigned entity type is set in the template.

Syntax
@entitygettype (entity type, entity id)

Type
HyperMesh Template Function

Inputs
entity type

The type of the queried entity.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.226

entity id
The ID of the queried entity.

@entityincollector()
Returns the number of entities in a collector.

Syntax
@entityincollector (entity type, config_num, type_num)

Type
HyperMesh Template Function

Inputs
entity type

The type of entity to be counted.

config_num
The configuration number of the entities being counted. If set to 0, entities are counted regardless
of their configuration.

type_num
The type number of the entities being counted. If set to 0, all the entities are counted regardless
of their type.

@entitymaxid()
Returns the maximum ID in use from a type of entity.

Syntax
@entitymaxid (entity type)

Type
HyperMesh Template Function

Inputs
entity type

The type of the entity.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.227

@enum()
Returns the value of an enumeration.

Syntax
@enum (enum name, enum index)

Type
HyperMesh Template Function

Inputs
enum name

The name of the enumeration.

enum index
The index into the enumeration (starting at 1).

@exists()
Indicates if a pointer is pointing to an entity or if it is set to NULL.

Syntax
@exists (pointer)

Type
HyperMesh Template Function

Inputs
pointer

A pointer to an entity. If the pointer is pointing to an entity, the function returns 1. If not, the
function returns 0.

@exp()
Exponential of x.

Syntax
@exp (x)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.228

Inputs
x

A value of type real.

Example

@exp(2) = e2 = (2.718281828...)2 = 7.389056...

@exportdmiginlongformat()
Returns 0 if EXPORT_DMIG_LONGFORMAT is passed via *feoutputwithdata.

Syntax
@exportdmiginlongformat()

Type
HyperMesh Template Function

Description
Returns 0 if EXPORT_DMIG_LONGFORMAT is passed via *feoutputwithdata.

Examples
Example:

*if([@exportdmiginlongformat()])
 *if([@writehmcomments()])
 *string("$$")
 *end()
 string("$HMNAME DIRECTMATRIXINPUTS ")
 *field(integer,id,16)
 *quote()
 *field(string,name,0)
 *quote()
 *end()
 string("$HWCOLOR DIRECTMATRIXINPUTS ")
 *field(integer,id,16)
 *field(integer,color,16)
 *end()
 *string("$$")
 *end()
 *endif()
*else()
 *if([@writehmcomments()])
 *string("$$")
 *end()
 *string("$HMNAME DIRECTMATRIXINPUTS ")
 *field(integer,id,8)
 *quote()
 *field(string,name,0)
 *quote()
 *end()
 *string("$HWCOLOR DIRECTMATRIXINPUTS ")
 *field(integer,id,8)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.229

 *field(integer,color,8)
 *end()
 *string("$$")
 *end()
 *endif()
*endif()

Version History
2021

@exportsysteminlongformat()
Returns the value of the "Export CORD2 and CORD4 in long format" export option.

Syntax
@exportsysteminlongformat()

Type
HyperMesh Template Function

Description
Returns the value of the "Export CORD2 and CORD4 in long format" export option. This option will
export the CORD2R and CORD4R system in long format even if the template loaded is of regular format.
A return of 1 means export system in long format, and 0 means export system in regular format.

Examples

*if([@exportsysteminlongformat() == 1])
 ...write system in long format...
*else()
 ...write system in regular format...
*endif()

Version History
2019

@fabs()
Absolute value of x.

Syntax
@fabs (x)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.230

Inputs
x

A value of type real.

@getattributearraylength()
Retrieves the length of a 1D array attribute attached to a specific entity.

Syntax
@getattributearraylength (entity type, entity id, attribute)

Type
HyperMesh Template Function

Inputs
entity type

The type of entity, such as sets, elements, or nodes, to which entity id refers.

entity id
The ID of the entity from which you want to get information.

attribute
The name of the attribute (must start with '$').

@getattributearrayvalue()
Retrieves the value of a 1D array attribute attached to a specific entity.

Syntax
@getattributearrayvalue (entity type, entity id, attribute, index)

Type
HyperMesh Template Function

Inputs
entity type

The type of entity, such as sets, elements, or nodes, to which entity id refers.

entity id
The ID of the entity from which you want to get information.

attribute
The name of the attribute (must start with '$').

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.231

index
The index into the array (starting at 1).

@getattributearrayvaluebyinternalid1()
Returns the internal ID of a 1D array attribute attached to an entity.

Syntax
@getattributearrayvaluebyinternalid1 (entity_type, id, attribute, index)

Type
HyperMesh Template Function

Description
Returns the internal ID of a 1D array attribute attached to an entity.

Inputs
entity_type

The type of entity to query.

id
The internal ID of the entity to query.

attribute
The name of the solver attribute array, starting with $.

index
The index into the array to query, starting with 1.

Example

*variableset(variable2,[@getattributearrayvaluebyinternalid1(loadcols,variable20,
$DSLoad_Groups_Name,counter5)])

Version History
2017.1

@getattributearrayvaluebyinternalid2()
Returns the value (active ID) of a 1D array attribute attached to an entity.

Syntax
@getattributearrayvaluebyinternalid2 (entity_type, id, attribute, index)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.232

Type
HyperMesh Template Function

Description
Returns the internal ID of a 1D array attribute attached to an entity.

Inputs
entity_type

The type of entity to query.

id
The internal ID of the entity to query.

attribute
The name of the solver attribute array, starting with $.

index
The index into the array to query, starting with 1.

Example

*variableset(variable2,[@getattributearrayvaluebyinternalid2(loadcols,variable20,
$DSLoad_Groups_Name,counter5)])

Version History
2017.1

@getattributevalueinternalid()
Returns the internal ID value of an attribute attached to a specific entity.

Syntax
@getattributevalueinternalid (entity_type, entity_id, attribute, index)

Type
HyperMesh Template Function

Description
Returns the internal ID value of an attribute attached to a specific entity.

Inputs
entity_type

The type of entity to query.

entity_id
The ID of the entity to query.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.233

attribute
The name of the attribute to query, starting with $.

index
The index into the attribute array, starting at 1.

Examples
To get the entity ID for attribute $Test at index 3 on component 10:

@getattributevalueinternalid(comps, 10, $Test, 3)

Version History
2019

@getcelltriplevalue()
Returns the values of a triple cell in a table.

Syntax
@getcelltriplevalue (row_index, column_index, triple_index)

Type
HyperMesh Template Function

Description
This function returns the values of a triple cell in a table. This can only be used inside of a *tables()
block.

Inputs
row_index

The index of the row in the table, starting from 0.

column_index
The index of the column in the table, starting from 0.

triple_index
The index of the triple value. Valid values are 0-2.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)
 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@getcelltype(counter2,counter1)])

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.234

 *if([variable3 == 7])
 *field(real,[@getcelltriplevalue(counter2,counter1,0)],0)
 *string(" ")
 *field(real,[@getcelltriplevalue(counter2,counter1,1)],0)
 *string(" ")
 *field(real,[@getcelltriplevalue(counter2,counter1,2)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

@getcelltype()
Returns the type of a cell in a table.

Syntax
@getcelltype (row_index, column_index)

Type
HyperMesh Template Function

Description
This function returns the type of a cell in a table. This can only be used inside of a *tables() block.

Inputs
row_index

The index of the row in the table, starting from 0.

column_index
The index of the column in the table, starting from 0.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)
 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@getcelltype(counter2,counter1)])
 *if([variable3 == 7])
 *field(real,[@getcelltriplevalue(counter2,counter1,0)],0)
 *string(" ")
 *field(real,[@getcelltriplevalue(counter2,counter1,1)],0)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.235

 *string(" ")
 *field(real,[@getcelltriplevalue(counter2,counter1,2)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

@getcellvalue()
Returns the values of a bool, double, float, int, string, unsigned int, or entity ID cell in a table.

Syntax
@getcellvalue (row_index, column_index)

Type
HyperMesh Template Function

Description
This function returns the values of a bool, double, float, int, string, unsigned int, or entity ID cell in a
table. This can only be used inside of a *tables() block.

Inputs
row_index

The index of the row in the table, starting from 0.

column_index
The index of the column in the table, starting from 0.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)
 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@getcelltype(counter2,counter1)])
 *if([variable3 == 3 || variable3 == 4])
 *field(real,[@getcellvalue(counter2,counter1)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.236

 *endloop()
*output()

Version History
11.0

@getcollectorcardimage()
Retrieves the card image of a collector (such as PSHELL, Part, and so on).

Syntax
@getcollectorcardimage (collector type, collector id)

Type
HyperMesh Template Function

Inputs
collector type

The type of collector, such as properties or components.

collector ID
The ID of the collector.

Example
The following template code outputs the name and card image of every component in the model:

*components("","")
*format()
*string("component: ")
*field(quotedstring,name,0)
*string("card image: ")
*field(quotedstring,[@getcollectorcardimage(comps,id)],0)
*end()
*output()

@getcollectorname()
Retrieves the name of a collector.

Syntax
@getcollectorname (collector type, collector id)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.237

Inputs
collector type

The type of collector (such as properties or components).

collector id
The ID of the collector.

@getcollectornamebyinternalid()
Returns the name of a collector by internal ID.

Syntax
@getcollectornamebyinternalid (entity_type, entity_id)

Type
HyperMesh Template Function

Description
Returns the name of a collector by internal ID.

Inputs
entity_type

The type of collector entity to query.

entity_id
The ID of the collector entity to query.

Examples
To query component 100:

@getcollectornamebyinternalid(comps, 100)

Version History
2019

@getcolumnentitytype()
Returns the entity type ID of a column in a table.

Syntax
@getcolumnentitytyp (column_index)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.238

Description
This function returns the entity type ID of a column in a table. This can only be used inside
of a *tables() block. The entity type ID can be converted to the entity type name using
@getdatabaseentitytypename.

Inputs
column_index

The index of the column in the table, starting from 0.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)
 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@getcolumntype(counter1)])
 *variableset(variable4,[@getcolumnentitytype(counter1)])
 *if([variable3 == 2 && variable4 > 0])
 *field(integer,variable4,0)
 *field(integer,[@getcellvalue(counter2,counter1)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

@getcolumnlabel()
Returns the label of a column in a table.

Syntax
@getcolumnlabel (column_index)

Type
HyperMesh Template Function

Description
This function returns the label of a column in a table. This can only be used inside of a *tables() block.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.239

Inputs
column_index

The index of the column in the table, starting from 0.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *field(string,[@getcolumnlabel(counter1)],0)
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

@getcolumntype()
Returns the type ID of a column in a table.

Syntax
@getcolumntype (column_index)

Type
HyperMesh Template Function

Description
This function returns the type ID of a column in a table. This can only be used inside of a *tables()
block. The following values are valid for return:

1 - integer

2 - unsigned integer/entity ID

3 - float

4 - double

5 - bool

6 - string

7 - triple

Inputs
column_index

The index of the column in the table, starting from 0.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.240

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)
 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@getcolumntype(counter1)])
 *if([variable3 == 7])
 *field(real,[@getcelltriplevalue(counter2,counter1,0)],0)
 *string(" ")
 *field(real,[@getcelltriplevalue(counter2,counter1,1)],0)
 *string(" ")
 *field(real,[@getcelltriplevalue(counter2,counter1,2)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

@getcontrolcardattribute()
Returns the value of an attribute on a Control Card.

Syntax
@getcontrolcardattribute (control card, attribute)

Type
HyperMesh Template Function

Inputs
control card

The name of the Control Card.

attribute
The attribute name.

Example
If a Control Card and/or attribute is not present, zero is returned for the menu portion, and an error
occurs for the format portion. Use @controlcardattributedefined() to verify the existence of a
Control Card or attribute.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.241

@getcurrentincludeexportformat()
Returns the export format type set using *setformattype().

Syntax
@getcurrentincludeexportformat ()

Type
HyperMesh Template Function

Description
Returns the export format type set using *setformattype().

Examples

*if([@getcurrentincludeexportformat() == 1])
 ...write in standard format...
*elseif([@getcurrentincludeexportformat() == 2])
 ...write in long format...
*else()
 ...write in I10 format...
*endif()

Version History
2020

@getdatabaseentitytypename()
Gets the type name of an entity from its index.

Syntax
@getdatabaseentitytypename (index)

Type
HyperMesh Template Function

Description
This function is used to get the HyperMesh entity type name corresponding to index, where index is a
value between 1 and globalentitytypesmax (both inclusive).

Example
The following code prints all HyperMesh entity type names by calling the function
@getdatabaseentitytypename for every valid index:

*text()
 *string("--------------List of entity types---------------")
 *end()
 *string(" Index HM entity type name ")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.242

 *end()
 *string("---")
 *end()
 *counterset(counter1,1)
 *loopif([counter1 <= globalentitytypesmax])
 *string(" ")
 *field(integer,counter1,0)
 *string(" ")
 *if([counter1 < 10])
 *string(" ")
 *endif()
 *field(string,[@getdatabaseentitytypename(counter1)],0)
 *end()
 *counterinc(counter1)
 *endloop()
 *string("---")
 *end()
*output()

Errors
If an error occurs in the execution of this command during export, the export is stopped at that point
with an error message.

@getentityarrayvalue()
Returns the array value of an entity.

Syntax
@getentityarrayvalue (entity_type, entity_id, data_name, index)

Type
HyperMesh Template Function

Description
Returns the array value of an entity.

Inputs
entity_type

The type of entity to query.

entity_id
The ID of the entity to query.

data_name
The array data name to query. Note that "." extentions for data names are not supported.

index
The index into the array to query, starting at 0.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.243

Examples
To export all the IDs of a set:

*counterset(counter1,0)
*loopif([counter1 != idsmax])
 *field(int,[@getentityarrayvalue(sets,id,ids,counter1)],10)
 *counterinc(counter1)
*endloop()

Version History
2019

@getentitycount()
Returns the entity count of an entity array type data name.

Syntax
@getentitycount (data_name)

Type
HyperMesh Template Function

Description
Returns the entity count of an entity array type data name.

Inputs
data_name

The data name to query.

Examples
To store the count of slavecompids into variable16:

*variableset(variable16,[@getentitycount(slavecompids)])

Version History
2019

@getentitytype()
Returns the entity type of an entity array type data name.

Syntax
@getentitytype (data_name)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.244

Type
HyperMesh Template Function

Description
Returns the entity type of an entity array type data name.

Inputs
data_name

The data name to query.

Examples
To check the entity type of slavecompids:

*if([@getentitytype(slavecompids) == 3])

Version History
2019

@getentityvalue()
Retrieves the value of an entity.

Syntax
@getentityvalue (entity type, entity id, data name)

Type
HyperMesh Template Function

Inputs
entity type

The type of entity, such as sets, elems, or nodes, to which entity id refers.

entity id
The ID of the entity you want to reference.

data name
The data name of the entity. For example, ID, name, node1.globalx.

Example
To output the name of a set with the ID, 1:

*field (string,[@getentityvalue(sets, 1, name)], 32)

The @getentityvalue function allows you to get a value from an entity if you know the entity’s type
and ID. It allows you to get a value of the collector which contains an entity. This function searches the
database and may access the data values slower than other commands, such as *sets().

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.245

@getentityvaluebyinternalid()
Returns the value of an entity data name.

Syntax
@getentityvaluebyinternalid (entity_type, entity_id, data_name)

Type
HyperMesh Template Function

Description
Returns the value of an entity data name.

Inputs
entity_type

The type of entity to query.

entity_id
The ID of the entity to query.

data_name
The data name to query.

Examples
To output the name of a set with the internal ID 1:

*field (string,[@getentityvaluebyinternalid(sets, 1, name)], 32)

Version History
2019

@getentityvalueinternalid()
Returns the internal ID of an entity.

Syntax
@getentityvalueinternalid (entity_type, entity_id, data_name)

Type
HyperMesh Template Function

Description
Returns the internal ID of an entity.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.246

Inputs
entity_type

The type of entity to query.

entity_id
The ID of the entity to query.

data_name
The entity data name to query.

Examples
To output the node1 internal ID of the element with the internal ID 1:

*variableset(variable16,[@getentityvalueinternalid(elems,1,node1)]);

Version History
2019

@getidoffsetvalue()
Returns the ID offset value for an input entity with ID pool number in a specified include file ID.

Syntax
@getidoffsetvalue (entity_type, pool_id, include_file_id)

Type
HyperMesh Template Function

Description
Returns the ID offset value for an input entity with ID pool number in a specified include file ID.

Inputs
entity_type

The type of entity to query.

pool_id
The ID pool number of the entity to query, if any.

include_file_id
The include file ID for which the offset is required.

Examples
To get the ID offset for cards in include ID 5:

*variableset(variable1,[@getidoffsetvalue(cards,0,5)])

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.247

Version History
2019

@getincludefullname()
Returns the include file full name and path for a given include ID.

Syntax
@getincludefullname (include_id)

Type
HyperMesh Template Function

Description
Returns the include file full name and path for a given include ID.

Inputs
include_id

The ID of the include file to query.

Examples
To get the full name for include ID 10:

*field(quotedstring,[@getincludefullname(10)],0)

Version History
2019

@getincludeidbyfilename()
Returns the ID of an include file name.

Syntax
@getincludeidbyfilename (filename)

Type
HyperMesh Template Function

Description
Returns the ID of the include file if it exists, -1 if it does not, and 0 if it is the master file.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.248

Inputs
filename

The name of the include file.

Example

*variableset(variable1,"[@getincludeidbyfilename($FileNameTran)]")
*if([@getincludereferenceflag(variable1,1) == 1)])
*string("*INCLUDE_PATH")
*end()
*field(string,[@inclstrsplit($FileNameTran,+)],72)
*end()
*endif()

Version History
14.0

@getincludereferenceflag()
Returns the referenced state of an include in the master file.

Syntax
@getincludereferenceflag (include_id, exception)

Type
HyperMesh Template Function

Description
Returns 1 if include_id is referenced into the master file, 0 otherwise.

Inputs
include_id

The ID of the include.

exception
0 - The include file reference depends on its export status.
1 - The include file reference depends on its export status, except for Include_Transform which is
always referenced regardless its export status.

Example

*variableset(variable1,"[@getincludeidbyfilename($FileNameTran)]")
*if([@getincludereferenceflag(variable1,1) == 1)])
*string("*INCLUDE_PATH")
*end()
*field(string,[@inclstrsplit($FileNameTran,+)],72)
*end()
*endif()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.249

Version History
14.0

@getinternalid()
This command, used in feoutput and summary templates, returns an internal ID based on the pool
number and solver ID of an entity. This command needs to be used in conjunction with the command
@getentityvalue(), which returns the solver ID. You must know the pool number corresponding to an
entity type of attribute.

Syntax
@getinternalid (poolnumber, solverid)

Type
HyperMesh Template Function

Description

Inputs
poolnumber

The pool number to which the entity belongs.

solverId
The ID of the solver that you use.

Example

 @getinternalid(22, 1)

Where 22 is pool number and 1 is solver ID.

Actual usage:

*variableset(variable1,[@getentityvalue(components, id, $LSD_SID)])

Where ID is the comp ID.

*variableset(variable2, [@getinternalid(20, variable1)])

Where the value 20 is the pool number belonging to the entity type attribute $LSD_SID defined the
dyna.key template and variable1 is solver ID of the attribute $LSD_SID. The variable2 will be the
internal ID of the attribute $LSD_SID.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.250

@getnewid()
Returns the next valid ID by checking IDs of other entities.

Syntax
@getnewid (entity_type, id, pool_id, entity_type_check, pool_id_check)

Type
HyperMesh Template Function

Description
This function returns the values of a triple cell in a table. This can be used both inside and outside of a
*tables() block.

Inputs
entity_type

The type of the entity to query.

entity_id
The ID of the entity to query.

pool_id
The ID pool number to which the queried entity belongs, if any.

entity_type_check
The type of the entity to check for a conflict with.

pool_id_check
The ID pool number to which the conflict entity belongs, if any.

Example

*variableset(variable9,[@getnewid(CONTACTSURFS,id,0,SETS,40)])

Version History
14.0.110

@getsolverid()
Returns solver ID based on entity type and internal ID of an entity. This needs to be used in feoutput
and summary templates.

Syntax
@getsolverid (entity type, id)

Type
HyperMesh Template Function

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.251

Inputs
entityType

The entity type of the entity for which you wish to retrieve the solver ID.

id
The entity ID of the entity for which you wish to retrieve the solver ID.

Example

@getsolverid(ELEMS,99)
@getsolverid(PROPS,1)
*variableset(variable1,[@getsolverid(ELEMS, 99)])

Where variable1 will be the solver ID corresponding to the internal ID 99.

@gettablecelltriplevalue()
Returns the values of a triple cell in a table.

Syntax
@gettablecelltriplevalue (table_id, row_index, column_index,triple_index)

Type
HyperMesh Template Function

Description
This function returns the values of a triple cell in a table. This can be used both inside and outside of a
*tables() block.

Inputs
table_id

The ID of the table.

row_index
The index of the row in the table, starting from 0.

column_index
The index of the column in the table, starting from 0.

triple_index
The index of the triple value. Valid values are 0-2.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.252

 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@gettablecelltype(id,counter2,counter1)])
 *if([variable3 == 7])
 *field(real,[@gettablecelltriplevalue(id,counter2,counter1,0)],0)
 *string(" ")
 *field(real,[@gettablecelltriplevalue(id,counter2,counter1,1)],0)
 *string(" ")
 *field(real,[@gettablecelltriplevalue(id,counter2,counter1,2)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

@gettablecelltype()
Returns the type of a cell in a table.

Syntax
@gettablecelltype (table_id, row_index, column_index)

Type
HyperMesh Template Function

Description
This function returns the type of a cell in a table. This can be used both inside and outside of a
*tables() block.

Inputs
table_id

The ID of the table.

row_index
The index of the row in the table, starting from 0.

column_index
The index of the column in the table, starting from 0.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.253

 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@gettablecelltype(id,counter2,counter1)])
 *if([variable3 == 7])
 *field(real,[@gettablecelltriplevalue(id,counter2,counter1,0)],0)
 *string(" ")
 *field(real,[@gettablecelltriplevalue(id,counter2,counter1,1)],0)
 *string(" ")
 *field(real,[@gettablecelltriplevalue(id,counter2,counter1,2)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

@gettablecelltypebyinternalid()
Returns the type of a cell in a table.

Syntax
@gettablecelltypebyinternalid (table_id, row_index, column_index)

Type
HyperMesh Template Function

Description
Returns the type of a cell in a table.

Inputs
table_id

The ID of the table entity to query.

row_index
The row of the table to query, starting from 0.

column_index
The colum of the table to query, starting from 0

Examples
To query table 100, row 3 and column 10:

@gettablecelltypebyinternalid(100, 3, 10)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.254

Version History
2019

@gettablecellvalue()
Returns the values of a bool, double, float, int, string, unsigned int, or entity ID cell in a table.

Syntax
@gettablecellvalue (table_id, row_index, column_index)

Type
HyperMesh Template Function

Description
This function returns the values of a bool, double, float, int, string, unsigned int, or entity ID cell in a
table. This can be used both inside and outside of a *tables() block.

Inputs
table_id

The ID of the table.

row_index
The index of the row in the table, starting from 0.

column_index
The index of the column in the table, starting from 0.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)
 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@gettablecelltype(id,counter2,counter1)])
 *if([variable3 == 3 || variable3 == 4])
 *field(real,[@gettablecellvalue(id,counter2,counter1)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.255

@gettablecellvaluebyinternalid()
Returns the values of a bool, double, float, int, string, unsigned int, or entity ID cell in a table.

Syntax
@gettablecellvaluebyinternalid (table_id, row_index, column_index)

Type
HyperMesh Template Function

Description
Returns the values of a bool, double, float, int, string, unsigned int, or entity ID cell in a table.

Inputs
table_id

The ID of the table entity to query.

row_index
The row of the table to query, starting from 0.

column_index
The colum of the table to query, starting from 0

Examples
To query table 100, row 3 and column 10:

@gettablecellvaluebyinternalid(100, 3, 10)

Version History
2019

@gettablecolumnentitytype()
Returns the entity type ID of a column in a table.

Syntax
@gettablecolumnentitytype (table_id, column_index)

Type
HyperMesh Template Function

Description
This function returns the entity type ID of a column in a table. This can be used both inside and
outside of a *tables() block. The entity type ID can be converted to the entity type name using
@getdatabaseentitytypename.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.256

Inputs
table_id

The ID of the table.

column_index
The index of the column in the table, starting from 0.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)
 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@getcolumntype(counter1)])
 *variableset(variable4,[@gettablecolumnentitytype(id,counter1)])
 *if([variable3 == 2 && variable4 > 0])
 *field(integer,variable4,0)
 *field(integer,[@getcellvalue(counter2,counter1)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

@gettablecolumnlabel()
Returns the label of a column in a table.

Syntax
@gettablecolumnlabel (table_id, column_index)

Type
HyperMesh Template Function

Description
This function returns the label of a column in a table. This can be used both inside and outside of a
*tables() block.

Inputs
table_id

The ID of the table.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.257

column_index
The index of the column in the table, starting from 0.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *field(string,[@gettablecolumnlabel(id,counter1)],0)
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

@gettablecolumnsize()
Returns the size (number of rows) of a column in a table.

Syntax
@gettablecolumnsize (table_id, column_index)

Type
HyperMesh Template Function

Description
This function returns the size (number of rows) of a column in a table. This can be used both inside and
outside of a *tables() block.

Inputs
table_id

The ID of the table.

column_index
The index of the column in the table, starting from 0.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)
 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@getcelltype(counter2,counter1)])

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.258

 *if([variable3 == 3 || variable3 == 4])
 *field(real,[@getcellvalue(counter2,counter1)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

@gettablecolumnsizebyinternalid()
Returns the size (number of rows) of a column in a table.

Syntax
@gettablecolumnsizebyinternalid (table_id, column_index)

Type
HyperMesh Template Function

Description
Returns the size (number of rows) of a column in a table.

Inputs
table_id

The ID of the table entity to query.

column_index
The colum of the table to query, starting from 0

Examples
To query table 100, column 10:

@gettablecolumnsizebyinternalid(100, 10)

Version History
2019

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.259

@gettablecolumntype()
Returns the type ID of a column in a table.

Syntax
@gettablecolumntype (table_id, column_index)

Type
HyperMesh Template Function

Description
This function returns the type ID of a column in a table. This can be used both inside and outside of a
*tables() block. The following values are valid for return:

1 - integer

2 - unsigned integer/entity ID

3 - float

4 - double

5 - bool

6 - string

7 - triple

Inputs
table_id

The ID of the table.

column_index
The index of the column in the table, starting from 0.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)
 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@gettablecolumntype(id,counter1)])
 *if([variable3 == 7])
 *field(real,[@getcelltriplevalue(counter2,counter1,0)],0)
 *string(" ")
 *field(real,[@getcelltriplevalue(counter2,counter1,1)],0)
 *string(" ")
 *field(real,[@getcelltriplevalue(counter2,counter1,2)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)
 *endloop()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.260

*output()

Version History
11.0

@gettablecolumntypestring()
Returns the type string of a column in a table.

Syntax
@gettablecolumntype (table_id, column_index)

Type
HyperMesh Template Function

Description
This function returns the type string of a column in a table. This can be used both inside and outside of
a *tables() block. The following values are valid for return:

int

unsignedint

float

double

bool

string

triple

HyperMesh entity types (for example elements, plies, components, and so on)

Inputs
table_id

The ID of the table.

column_index
The index of the column in the table, starting from 0.

Example

*tables()
 *format()
 *counterset(counter1,0)
 *variableset(variable1,columns)
 *loopif([counter1 < variable1])
 *counterset(counter2,0)
 *variableset(variable2,[@gettablecolumnsize(id,counter1)])
 *loopif([counter2 < variable3])
 *variableset(variable3,[@gettablecolumntypestring(id,counter1)])
 *if([variable3 == "triple"])
 *field(real,[@getcelltriplevalue(counter2,counter1,0)],0)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.261

 *string(" ")
 *field(real,[@getcelltriplevalue(counter2,counter1,1)],0)
 *string(" ")
 *field(real,[@getcelltriplevalue(counter2,counter1,2)],0)
 *end()
 *endif()
 *counterinc(counter2)
 *endloop()
 *counterinc(counter1)
 *endloop()
*output()

Version History
11.0

@gettotalmass()
Returns different total mass values of the model.

Syntax
@gettotalmass (?type?)

Type
HyperMesh Template Function

Description
Returns different total mass values of the model.

Inputs
type

The type of mass to query. If not specified, the total mass is returned.
structural - The total structural mass of the model.
nonstructural - The total non-structural mass of the model.
lumped - The total lumped mass of the model.
rigid - The total rigid mass of the model.
transferred - The total transferred mass of the model.
engineering - The total engineering mass of the model.
distributed - The total distributed mass of the model.

Examples
To query the total mass:

@gettotalmass()

To query the rigid mass:

@gettotalmass("rigid")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.262

Version History
2019

@icedependentcount()
Returns the number of ICE dependent nodes for an independent node.

Syntax
@icedependentcount (independent_node_id)

Type
HyperMesh Template Function

Description
Returns the number of ICE dependent nodes for an independent node.

Inputs
independent_node_id

The ID of the ICE independent node.

Example

*elements(57,0,"ICE","")
*format()
*string("*ice(")
*field(integer,id,0)
*string(",")
*field(integer,type,0)
*string(",")
*field(integer,independentnodesmax,0)
*string(",")
*field(integer,dependentnodesmax,0)
*string(")")
*end()

*counterset(counter1,0)
*loopif([counter1 < independentnodesmax])
*string(" *icelink(")
*pointerset(pointer1,independentnodes,counter1)
*field(integer,pointer1.pointervalue,0)
*string(",")
*counterset(counter2,[@icedependentcount(pointer1.pointervalue)])
*field(integer,counter2,0)
*counterset(counter3,0)
*loopif([counter3 < counter2])
*string(",")
*field(integer,[@icedependentnode(pointer1.pointervalue,counter3)],0)
*string(",")
*field(integer,[@icedependentdof(pointer1.pointervalue,counter3)],0)
*counterinc(counter3)
*endloop()
*counterinc(counter1)
*string(")")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.263

*end()
*endloop()
*output()

Version History
14.0

@icedependentdof()
Returns ICE dependent node DOFs for an independent node.

Syntax
@icedependentdof (independent_node_id, index)

Type
HyperMesh Template Function

Description
Returns ICE dependent node DOFs for an independent node.

Inputs
independent_node_id

The ID of the ICE independent node.

index
The index of the dependent node, starting from 0.

Example

*elements(57,0,"ICE","")
*format()
*string("*ice(")
*field(integer,id,0)
*string(",")
*field(integer,type,0)
*string(",")
*field(integer,independentnodesmax,0)
*string(",")
*field(integer,dependentnodesmax,0)
*string(")")
*end()

*counterset(counter1,0)
*loopif([counter1 < independentnodesmax])
*string(" *icelink(")
*pointerset(pointer1,independentnodes,counter1)
*field(integer,pointer1.pointervalue,0)
*string(",")
*counterset(counter2,[@icedependentcount(pointer1.pointervalue)])
*field(integer,counter2,0)
*counterset(counter3,0)
*loopif([counter3 < counter2])

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.264

*string(",")
*field(integer,[@icedependentnode(pointer1.pointervalue,counter3)],0)
*string(",")
*field(integer,[@icedependentdof(pointer1.pointervalue,counter3)],0)
*counterinc(counter3)
*endloop()
*counterinc(counter1)
*string(")")
*end()
*endloop()
*output()

Version History
14.0

@icedependentnode()
Returns ICE dependent nodes for an independent node.

Syntax
@icedependentnode (independent_node_id, index)

Type
HyperMesh Template Function

Description
Returns ICE dependent nodes for an independent node.

Inputs
independent_node_id

The ID of the ICE independent node.

index
The index of the dependent node, starting from 0.

Example

*elements(57,0,"ICE","")
*format()
*string("*ice(")
*field(integer,id,0)
*string(",")
*field(integer,type,0)
*string(",")
*field(integer,independentnodesmax,0)
*string(",")
*field(integer,dependentnodesmax,0)
*string(")")
*end()

*counterset(counter9,0)
*loopif([counter9 < independentnodesmax])

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.265

*string(" *icelink(")
*pointerset(pointer1,independentnodes,counter9)
*field(integer,pointer1.pointervalue,0)
*counterset(counter4,[@icedependentcount(pointer1.pointervalue)])
*counterset(counter3,0)
*string(",")
*field(integer,counter4,0)
*loopif([counter3 < counter4])
*string(",")
*field(integer,[@icedependentnode(pointer1.pointervalue,counter3)],0)
*string(",")
*field(integer,[@icedependentdof(pointer1.pointervalue,counter3)],0)
*counterinc(counter3)
*endloop()
*counterinc(counter9)
*string(")")
*end()
*endloop()
*output()

Version History
14.0

@keywordrenumber()
Returns 1 if RENUMBER is passed with the queried keyword via *feoutputwithdata.

Syntax
@keywordrenumber ("keyword")

Type
HyperMesh Template Function

Description
This function returns 1 if RENUMBER is passed with the queried keyword via *feoutputwithdata.

Inputs
keyword

The keyword attribute name.

Example

*if([@keywordrenumber("MPC_GENERAL")])
*field(integer,[id+#maxMPCId],10)
*else()
*field(integer,id,10)
*endif()

Version History
10-SA1-110

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.266

@loadexistinmergedloadloadsteptable()
Returns 1 if the load exists in the table containing merged loads for a loadstep created by
*createmergedloadloadsteptable().

Syntax
@loadexistinmergedloadloadsteptable (id)

Type
HyperMesh Template Function

Description
This function returns 1 if the load exists in the table containing merged loads for a loadstep created by
*createmergedloadloadsteptable().

Inputs
id

The ID of the load to query.

Example

*if([@loadexistinmergedloadsteptable(id)])
*string("This is a summed load")
*else()
*string("This is not a summed load")
*endif()

Version History
11.0.101

@log()
Natural logarithm.

Syntax
@log (x)

Type
HyperMesh Template Function

Inputs
x

A value of type real.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.267

Example

@log(2) = LN(2) = 0.693147

@log10()
Logarithm of x to the base 10.

Syntax
@log10 (x)

Type
HyperMesh Template Function

Inputs
x

A value of type real.

Example

@log(100) = Log10(100) = 2.000

@lookup()
Retrieves a value stored in a lookup table.

Syntax
@lookup (key)

Type
HyperMesh Template Function

Inputs
key

Used to compare the keys found on the lookup table entries. If key matches one of the keys in
the lookup table, the function returns the value associated with that entry. If a matching key is
not found, the function returns 0.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.268

@magnitude()
Returns the magnitude of a vector.

Syntax
@magnitude (x comp, y comp, z comp)

Type
HyperMesh Template Function

Inputs
x comp

The components of the vector to be evaluated.

y comp
The components of the vector to be evaluated.

z comp
The components of the vector to be evaluated.

@namedentity()
Returns the value of the "Export as named entity" export option.

Syntax
@namedentity()

Type
HyperMesh Template Function

Description
Returns the value of the "Export as named entity" export option

Inputs
None.

Examples
Example:

*if([@namedentity()])
 // Code for named entity export
*endif()

Errors
Incorrect usage results in a Tcl error. To detect errors, you can use the catch command:

if { [catch {command_name...}] } {

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.269

 # Handle error
}

Version History
2021

@nlookup()
Retrieves a value stored in the nth lookup table.

Syntax
@nlookup (table, key)

Type
HyperMesh Template Function

Inputs
table

A value between table1 and table20 indicating which of the 20 possible tables should be
manipulated.

key
Used to compare the keys found on the lookup table entries. If key matches one of the keys in
the lookup table, the function returns the value associated with that entry. If a matching key is
not found, the function returns 0.

@partinstancemode()
Returns 1 if the model is a part/instance model.

Syntax
@partinstancemode ()

Type
HyperMesh Template Function

Description
Returns 1 if the model is a part/instance model.

Example

*if([@partinstancemode()])
...
*endif()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.270

Version History
2020

@pow()
Returns the real value of X raised to the power Y.

Syntax
@pow (x, y)

Type
HyperMesh Template Function

Inputs
x

A value of type real.

y
A value of type real.

Example

@pow(2.0, 3.0) = 2.03 =8.0

@rangecount()
Returns the number of ranges for the numbers used with *rangeadd().

Syntax
@rangecount ()

Type
HyperMesh Template Function

Example

*elements(104,0,"","")
 *format()
 *rangeadd(id)
 *after()
 *counterset(counter1,1)
 *loopif([counter1 <= @rangecount()])
 *string("start of range = ")
 *field(integer,[@rangestart(counter1)],0)
 *end()
 *string("end of range = ")
 *field(integer,[@rangeend(counter1)],0)
 *end()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.271

 *counterinc(counter1)
 *endloop()
 *rangereset()
*output()

Use *rangeadd() to add numbers to a list. Once all numbers have been added, @rangecount() returns
the number of ranges (for example 1-5, 10-20) that are in the list. Use the functions @rangestart() and
@rangeend() to get the actual ranges.

@rangeend()
Returns the ending range of a range of numbers.

Syntax
@rangeend (range)

Type
HyperMesh Template Function

Inputs
range

The range number, starting at 1.

Example

*elements(104,0,"","")
 *format()
 *rangeadd(id)
 *after()
 *counterset(counter1,1)
 *loopif([counter1 <= @rangecount()])
 *string("start of range = ")
 *field(integer,[@rangestart(counter1)],0)
 *end()
 *string("end of range = ")
 *field(integer,[@rangeend(counter1)],0)
 *end()
 *counterinc(counter1)
 *endloop()
 *rangereset()
*output()

Use *rangeadd() to add numbers to a list. Once all numbers have been added, @rangecount() returns
how many ranges, such as 1-5, 10-20, are in the list. Use the functions @rangestart() and @rangeend()
to get the actual ranges.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.272

@rangestart()
Returns the starting range of a range of numbers.

Syntax
@rangestart (range)

Type
HyperMesh Template Function

Inputs
range

The range number, starting at 1.

Example

elements(104,0,"","")
 *format()
 *rangeadd(id)
 *after()
 *counterset(counter1,1)
 *loopif([counter1 <= @rangecount()])
 *string("start of range = ")
 *field(integer,[@rangestart(counter1)],0)
 *end()
 *string("end of range = ")
 *field(integer,[@rangeend(counter1)],0)
 *end()
 *counterinc(counter1)
 *endloop()
 *rangereset()
*output()

Use *rangeadd() to add numbers to a list. Once all numbers have been added, @rangecount() will
return how many ranges, such as 1-5, 10-20, are in the list. Use the functions @rangestart() and
@rangeend() to get the actual ranges.

@remsuppressedincludefrommaster()
Returns the value of the "Remove include file reference based on export status" export option.

Syntax
@remsuppressedincludefrommaster ()

Type
HyperMesh Template Function

Description
Returns the value of the "Remove include file reference based on export status" export option, 1 or 0.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.273

Example

*if([@remsuppressedincludefrommaster() == 0])
*string("*INCLUDE_PATH")
*end()
*field(string,[@inclstrsplit($FileNameTran,+)],72)
*end()
*endif()

Version History
14.0

@repeatkeywordtitles()
Returns the status of the "repeat keyword titles" export option.

Syntax
@autocreateproperty ()

Type
HyperMesh Template Function

Description
Returns 1 if the "repeat keyword titles" export option is enabled via *feoutputwithdata, 0 otherwise.

Example

*if([@repeatkeywordtitles() == 0])
 *if([counter14 == 0])
 *counterset(counter10,1)
 *counterset(counter14,1)
 *endif()
 *if([counter10 != -1])
 *string("*INTEGRATION_BEAM")
 *end()
 *counterset(counter10,-1)
 *endif()
*endif()

*if([@repeatkeywordtitles() == 1])
 *string("*INTEGRATION_BEAM")
 *end()
*endif()

Version History
13.0

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.274

@sin()
Trigonometric sine of x, where x is expressed in radians

Syntax
@sin (x)

Type
HyperMesh Template Function

Description
Trigonometric sine of x, where x is expressed in radians.

Inputs
x

Value of type real.

Errors
None.

@sqrt()
Returns the square root of a number.

Syntax
@sqrt (x)

Type
HyperMesh Template Function

Description
Returns the square root of a number.

Example
The square root of z is returned. If x is negative, an error is reported.

Errors
None.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.275

@stringequal()
Compares two strings, and returns 1 if they are equal; otherwise, 0.

Syntax
@stringequal (string1,string2)

Type
HyperMesh Template Function

Description
Compares two strings, and returns 1 if they are equal; otherwise, 0

Inputs
string 1

string 2

Errors
None.

@stringinstring()

Syntax
@stringinstring (string1, string2, case sensitive flag)

Type
HyperMesh Template Function

Description
Finds one string within another string.

Inputs
string1

The string that is searched.

string2
The string to be found.

case sensitive flag
If set to 1, the search only succeeds if the case type of the two strings match exactly. For
example, "Monday" will not match "monday".

Example

*materials("")

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.276

 *format()
 *if([@stringinstring(name,"Elastic",1) == 1])
 *string("Elastic material found: ")
 *field(string,name,0)
 *end()
 *endif()
*output()

Returns 1 if the string is found, otherwise, 0.

Errors
None.

@stringlookup()
Retrieves a value stored in a string lookup table.

Syntax
@stringlookup (key)

Type
HyperMesh Template Function

Description
Retrieves a value stored in a string lookup table.

Inputs
key

Used to compare the keys found in the string lookup table. key can be a data name or a literal
string enclosed in double quotes.

Example
The following example looks for the string "shells" in the string lookup table.

*if([@stringlookup("shells")])
 *string("$ shells found") *end()
*endif()

The following example finds components whose names are in the string lookup table:

*components("","")
 *format()
 *if([@stringlookup(name)])
 *field(string,name,32) *end()
 *endif()
*output()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.277

Errors
None.

@stringsplit()
Splits the given string using the given continuation character.

Syntax
@stringsplit (string,continuation_character)

Type
HyperMesh Template Function

Description
Splits the given string using the given continuation character. This is used in conjunction with the
*field, *fieldleft or *fieldright commands.

Inputs
string

The string to split.

continuation_character
The character to use on the continuation line. If set to blank, no continuation character will be
used.

Example
To split the string contained in the $eigvfile variable into a group of 60 characters, using no continuation
character:

*field(string,[@stringsplit($eigvfile,)],60)

To split the string contained in the $eigvfile variable into a group of 60 characters, using + as the
continuation character:

*field(string,[@stringsplit($eigvfile,+)],60)

Errors
None.

Version History
11.0.101

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.278

@stringstartswithnumericcharacter()
Checks if a string starts with a numeric character.

Syntax
@stringstartswithnumericcharacter (string)

Type
HyperMesh Template Function

Description
Checks if a string starts with a numeric character.

Inputs
string

The string to check.

Example

*components("")
*format()
 *if([@stringstartswithnumericcharacter (name)])
 *string("Component name starts with numeric character: ")
 *field(string,name,0)
 *end()
 *endif()
*output()

Returns 1 if the string starts with a numeric character, otherwise, 0.

Errors
None.

@tan()
Trigonometric tangent of x, where x is expressed in radians.

Syntax
@tan (x)

Type
HyperMesh Template Function

Description
Trigonometric tangent of x, where x is expressed in radians.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.279

Inputs
(x)

A value of type real.

Errors
None.

@vectorlookup()
Retrieves a value stored in a vector lookup table.

Syntax
@vectorlookup (key, x comp, y comp, z comp)

Type
HyperMesh Template Function

Description
Retrieves a value stored in a vector lookup table.

Inputs
key

Used to compare the keys found on the lookup table entries.

x comp, y comp, z comp
The components of the vector that are used to compare the vectors found on the lookup table
entries

Example
If both the keys match, and the vectors are within tolerance, then this function returns the value
associated with the matching entry. If a match is not found, the function returns 0.

Errors
None.

@vectorlookupcomponent()
Retrieves a component of the vector stored in a lookup table.

Syntax
@vectorlookupcomponent (comp, key)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.280

Type
HyperMesh Template Function

Description

Inputs
comp

The component of the vector (1 - x, 2 - y, 3 - z)

key
Used to compare the keys found on the lookup table entries.

Errors
None.

@vectorlookupnotkey()
Retrieves a value stored in a vector lookup table.

Syntax
@vectorlookupnotkey (key,x comp,y comp,z comp)

Type
HyperMesh Template Function

Description
Retrieves a value stored in a vector lookup table.

Inputs
key

Used to compare the keys found in the lookup table entries.

x comp,y comp,z comp
The components of the vector that is used to compare the vectors found in the lookup table
entries.

Example
If the input vector matches the vector in the lookup table and the keys do not match, this function
returns the value stored in the lookup table. When looking for a match between vectors, the tolerance
set by *vectortablereset() is used. If no match is found, this function returns 0.

Errors
None.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.281

@writehmcomments()
Returns 0 if HMCOMMENTS_SKIP is passed via *feoutputwithdata.

Syntax
@writehmcomments

Type
HyperMesh Template Function

Description
Returns 0 if HMCOMMENTS_SKIP is passed via *feoutputwithdata.

Example

*if([@writehmcomments()])
*string("$")
*end()
*string("$ CELAS1 Elements")
*end()
*string("$")
*end()
*endif()

Errors
None.

@writenastranoldcontact()
Returns the contact export option value for Nastran (MSC).

Syntax
@writenastranoldcontact ()

Type
HyperMesh Template Function

Description
Returns the contact export option value for Nastran (MSC).

Before 2017.1 for Nastran (MSC), both the "new" (BCBODY1, BCONECT BCTABL1) and "old" (BCBODY,
BCTABLE) contacts were mapped to entities in HyperMesh. As a result, users were allowed to create
decks with both the version of the solver cards and exported. That is not valid for the solver. Solver
either expects a "new" or "old" deck. With 2017.1, users have the option to create "new" version of
the solver cards and yet choose to export them as "old" contact cards. A return of 1 means old, and 0
means new.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.282

Example

*if([@writenastranoldcontact() == 0])
 ...write new contacts...
*else()
 ...write old contacts...
*endif()

Version History
2017.1

@writesolverfieldnames()
Returns 0 if HMSOLVERFILEDNAMES_SKIP is passed via *feoutputwithdata.

Syntax
@writesolverfieldnames ()

Type
HyperMesh Template Function

Description
Returns 0 if HMSOLVERFILEDNAMES_SKIP is passed via *feoutputwithdata.

Example

*if([@writesolverfieldnames()])
*string("$ X Y Z")
*end()
*endif()

Version History
2020

@xpointelementoffsetvectorlocal()
Transforms a global vector into an elemental system and returns the x value of the transformation.

Syntax
@xpointelementoffsetvectorlocal (element_id,x,y,z)

Type
HyperMesh Template Function

Description
Transforms a global vector into an elemental system and returns the x value of the transformation.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.283

Inputs
element_id

The ID of the element to use for the transformation.

x y z
The components of the vector to be transformed in the elemental system.

Example

*field(real,[@xpointelementoffsetvectorlocal(id,offsetax,offsetay,offsetaz)],8)
*field(real,[@ypointelementoffsetvectorlocal(id,offsetax,offsetay,offsetaz)],8)
*field(real,[@zpointelementoffsetvectorlocal(id,offsetax,offsetay,offsetaz)],8)

Errors
None.

Version History
13.0

@xpointlocal()
Transforms a global coordinate into a local system and returns the x value of the transformation.

Syntax
@xpointlocal (system_id,x,y,z)

Type
HyperMesh Template Function

Description
Transforms a global coordinate into a local system and returns the x value of the transformation.

Inputs
system_id

The ID of the coordinate system to use for the transformation.

x y z
The coordinates of the point to be transformed in the local system.

Example

*field(real,
[@xpointlocal(inputsystemid,globaloriginx,globaloriginy,globaloriginz)],8)
*field(real,
[@ypointlocal(inputsystemid,globaloriginx,globaloriginy,globaloriginz)],8)
*field(real,[90.0 -
 @zpointlocal(inputsystemid,globaloriginx,globaloriginy,globaloriginz)],8)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.284

Errors
None.

@xpointvectorlocal()
Transforms a vector into a local system and returns the x value of the transformed vector.

Syntax
@xpointvectorlocal (system id, x, y, z, vx, vy, vz)

Type
HyperMesh Template Function

Description
Transforms a vector into a local system and returns the x value of the transformed vector.

Inputs
system i

The ID of the system into which the point should be transformed.

x, y, z
The coordinates of the point where the vector is located in the global system.

vx, vy, vz
The components of the vector to be transformed.

Errors
None.

@ypointelementoffsetvectorlocal()
Transforms a global vector into an elemental system and returns the y value of the transformation.

Syntax
@ypointelementoffsetvectorlocal (element_id,x,y,z)

Type
HyperMesh Template Function

Description
Transforms a global vector into an elemental system and returns the y value of the transformation.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.285

Inputs
element_id

The ID of the element to use for the transformation.

x y z
The components of the vector to be transformed in the elemental system.

Example

*field(real,[@xpointelementoffsetvectorlocal(id,offsetax,offsetay,offsetaz)],8)
*field(real,[@ypointelementoffsetvectorlocal(id,offsetax,offsetay,offsetaz)],8)
*field(real,[@zpointelementoffsetvectorlocal(id,offsetax,offsetay,offsetaz)],8)

Errors
None.

Version History
13.0

@ypointlocal()
Transforms a global coordinate into a local system and returns the y value of the transformation.

Syntax
@ypointlocal (system_id,x,y,z)

Type
HyperMesh Template Function

Description
Transforms a global coordinate into a local system and returns the y value of the transformation.

Inputs
system_id

The ID of the coordinate system to use for the transformation.

x y z
The coordinates of the point to be transformed in the local system.

Example

*field(real,
[@xpointlocal(inputsystemid,globaloriginx,globaloriginy,globaloriginz)],8)
*field(real,
[@ypointlocal(inputsystemid,globaloriginx,globaloriginy,globaloriginz)],8)
*field(real,[90.0 -
 @zpointlocal(inputsystemid,globaloriginx,globaloriginy,globaloriginz)],8)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.286

Errors
None.

@ypointvectorlocal()
Transforms a vector into a local system and returns the y value of the transformed vector

Syntax
@ypointvectorlocal (system id, x, y, z, vx, vy, vz)

Type
HyperMesh Template Function

Description
Transforms a vector into a local system and returns the y value of the transformed vector

Inputs
system id

The ID of the system into which the point should be transformed.

x, y, z
The coordinates of the point where the vector is located in the global system.

vx, vy, vz
The components of the vector to be transformed.

Errors
None.

@zpointelementoffsetvectorlocal()
Transforms a global vector into an elemental system and returns the z value of the transformation.

Syntax
@zpointelementoffsetvectorlocal (element_id,x,y,z)

Type
HyperMesh Template Function

Description
Transforms a global vector into an elemental system and returns the z value of the transformation.

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.287

Inputs
element_id

The ID of the element to use for the transformation.

x y z
The components of the vector to be transformed in the elemental system.

Example

*field(real,[@xpointelementoffsetvectorlocal(id,offsetax,offsetay,offsetaz)],8)
*field(real,[@ypointelementoffsetvectorlocal(id,offsetax,offsetay,offsetaz)],8)
*field(real,[@zpointelementoffsetvectorlocal(id,offsetax,offsetay,offsetaz)],8)

Errors
None.

Version History
13.0

@zpointlocal()
Transforms a global coordinate into a local system and returns the z value of the transformation.

Syntax
@zpointlocal (system_id,x,y,z)

Type
HyperMesh Template Function

Description
Transforms a global coordinate into a local system and returns the z value of the transformation.

Inputs
system_id

The ID of the coordinate system to use for the transformation.

x y z
The coordinates of the point to be transformed in the local system.

Example

*field(real,
[@xpointlocal(inputsystemid,globaloriginx,globaloriginy,globaloriginz)],8)
*field(real,
[@ypointlocal(inputsystemid,globaloriginx,globaloriginy,globaloriginz)],8)
*field(real,[90.0 -
 @zpointlocal(inputsystemid,globaloriginx,globaloriginy,globaloriginz)],8)

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.288

Errors
None.

@zpointvectorlocal()
Transforms a vector into a local system and returns the z value of the transformed vector.

Syntax
@zpointvectorlocal (system id, x, y, z, vx, vy, vz)

Type
HyperMesh Template Function

Description
Transforms a vector into a local system and returns the z value of the transformed vector.

Inputs
system id

The ID of the system into which the point should be transformed.

x, y, z
The coordinates of the point where the vector is located in the global system.

vx, vy, vz
The components of the vector to be transformed.

Errors
None.

Undocumented Solver Template Functions
The list of undocumented solver template functions.

@attributearrayvaluewithoffset()

@attributeindexentitypoolid()

@componentfornode()

@entityexists()

@entitymaxsolverid()

@getabsolutename()

@getassemfromcomp()

@getentityclausevalue()

@getentitycount()

Proprietary Information of Altair Engineering

Altair HyperMesh Solver Templates 2021 Reference Guide
1 Solver Templates p.289

@getentitytype()

@getexporttype()

@inclstrsplit()

@indexbelongstoddvalrange()

@strlen()

@xcomppreslocal1d()

@ycomppreslocal1d()

@zcomppreslocal1d()

Proprietary Information of Altair Engineering

Index
Special Characters
@acos() 206
@activateNlgeomImpdyn() 206
@allowduplicateids() 207
@asin() 208
@atan() 208
@atan2() 209
@attributearray2dcols() 209
@attributearray2drows() 209
@attributearray2dvalue() 210
@attributearraylength() 210
@attributearrayvalue() 210
@attributearrayvalueinternalid() 211
@attributeindexarray2dcols() 211
@attributeindexarray2drows() 212
@attributeindexarray2dvalue() 212
@attributeindexarraylength() 213
@attributeindexarrayvalue() 213
@attributeindexbehavior() 213
@attributeindexentityid() 214
@attributeindexentitytype() 214
@attributeindexentitytypename() 214
@attributeindexidentifier() 215
@attributeindexsolver() 215
@attributeindexstatus() 215
@attributeindextype() 216
@attributeindexvalue() 217
@attributereferencecount() 217
@attributesmaxforsolver() 218
@autocreateproperty() 218
@checkfile() 219
@checkmergeinclude() 219
@compressNodeElems() 220
@controlcardattributedefined() 222
@cos() 222
@count() 222
@defaultstatus() 223
@defined() 223
@dofs() 224
@elemcountperinclude() 224
@entitygettype() 225
@entityincollector() 226
@entitymaxid() 226
@enum() 227

290

@exists() 227
@exp() 227
@exportdmiginlongformat() 228
@exportsysteminlongformat() 229
@fabs() 229
@getattributearraylength() 230
@getattributearrayvalue() 230
@getattributearrayvaluebyinternalid1() 231
@getattributearrayvaluebyinternalid2() 231
@getattributevalueinternalid() 232
@getcelltriplevalue() 233
@getcelltype() 234
@getcellvalue() 235
@getcollectorcardimage() 236
@getcollectorname() 236
@getcollectornamebyinternalid() 237
@getcolumnentitytype() 237
@getcolumnlabel() 238
@getcolumntype() 239
@getcontrolcardattribute() 240
@getcurrentincludeexportformat() 241
@getdatabaseentitytypename() 241
@getentityarrayvalue() 242
@getentitycount() 243
@getentitytype() 243
@getentityvalue() 244
@getentityvaluebyinternalid() 245
@getentityvalueinternalid() 245
@getidoffsetvalue() 246
@getincludeidbyfilename() 247
@getincludereferenceflag() 248
@getinternalid() 249
@getnewid() 250
@getsolverid() 250
@gettablecelltriplevalue() 251
@gettablecelltype() 252
@gettablecelltypebyinternalid() 253
@gettablecellvalue() 254
@gettablecellvaluebyinternalid() 255
@gettablecolumnentitytype() 255
@gettablecolumnlabel() 256
@gettablecolumnsize() 257
@gettablecolumnsizebyinternalid() 258
@gettablecolumntype() 259
@gettablecolumntypestring() 260
@gettotalmass() 261
@icedependentcount() 262

291

@icedependentdof() 263
@icedependentnode() 264
@keywordrenumber() 265
@loadexistinmergedloadloadsteptable() 266
@log() 266
@log10() 267
@lookup() 267
@magnitude() 268
@namedentity() 268
@nlookup() 269
@partinstancemode() 269
@pow() 270
@rangecount() 270
@rangeend() 271
@rangestart() 272
@remsuppressedincludefrommaster() 272
@repeatkeywordtitles() 273
@sin 274
@sqrt 274
@stringequal 275
@stringinstring() 275
@stringlookup 276
@stringsplit 277
@stringstartswithnumericcharacter 278
@tan 278
@vectorlookup 279
@vectorlookupcomponent 279
@vectorlookupnotkey 280
@writehmcomments 281
@writenastranoldcontact() 281
@writesolverfieldnames() 282
@xpointelementoffsetvectorlocal 282
@xpointlocal 283
@xpointvectorlocal 284
@ypointelementoffsetvectorlocal 284
@ypointlocal 285
@ypointvectorlocal 286
@zpointelementoffsetvectorlocal 286
@zpointlocal 287
@zpointvectorlocal 288
*accelerometers() 55
*addblock() 56
*addcomment() 56
*after() 57
*aftercollector() 57
*alefsiprojections() 57
*alereferencessystemswitches() 60

292

*alereferencesystemcurves() 58
*alereferencesystemgroups() 59
*alereferencesystemnodes() 60
*alesmoothings() 61
*aletanktests() 62
*assemblies() 63
*attachmentcontrols() 63
*attachments() 64
*bags() 65
*beamsectcols() 66
*beamsects() 67
*before() 67
*beforecollector() 68
*begincardmenu() 36
*beginlink() 68
*beginmenu() 36
*beginrepeat() 36
*beginrepeat2d() 37
*blocks() 68
*bodies() 69
*boxes() 70
*cardmenuitem() 38
*cards() 71
*codename() 72
*collections() 72
*collisions() 73
*comments() 74
*components() 75
*compressreal() 76
*configurations() 77
*connectorgroups() 78
*connectorsets() 79
*constrainedextranodes() 79
*constrainedrigidbodies() 80
*constraints() 81
*contactbehaviors() 83
*contactgroups() 84
*contactsurfs() 82
*controlvols() 85
*counterinc() 86
*counterset() 86
*createmergedloadloadsteptable() 87
*crosssections() 88
*curves() 88
*dampings() 89
*define() 90
*defineattribute() 91

293

*defineentitytypealiasname() 92
*deletemassthicknesstable() 93
*deletemergedloadloadsteptable() 93
*dequations() 94
*designpointmethods() 94
*designpoints() 95
*designpointsets() 96
*designvars() 97
*desvarlinks() 97
*directmatrixinputs() 97
*dvprels() 98
*elementareacalculation() 99
*elementclusters() 99
*elementresultstore() 100
*elements() 100
*else() 102
*enabledatabase() 102
*encryptions() 103
*end() 104
*endcardmenu() 39
*endif() 104
*endlink() 105
*endloop() 105
*endmenu() 39
*endrepeat() 39
*endrepeat2d() 39
*endsegments() 105
*entitypointerset() 105
*enumeration() 40
*equations() 106
*errormessage() 107
*executetclscript() 108
*explorations() 108
*failures() 109
*field() 110
*fieldleft() 111
*fieldleftwithcomments() 111
*fieldright() 112
*fieldrightwithcomments() 113
*fields() 113
*fieldwithcomments() 114
*format() 115
*freebodygroups() 115
*freebodysections() 116
*frictions() 117
*function() 118
*geometricrepresentations() 119

294

*geometryoverride() 120
*globaldefaults() 40
*groups() 120
*hm_features() 121
*hourglass() 122
*if() 123
*ignorecomment() 124
*ignoreelemconfigtype() 124
*include() 125
*includefiles() 126
*interfacecomponents() 126
*interfacelinkings() 127
*joints() 128
*laminates() 129
*lines() 130
*lists() 130
*loadcols() 131
*loads() 132
*loadsteps() 133
*loopif() 133
*markfailed() 134
*masses() 134
*materials() 135
*mechanisms() 136
*menuattributecreate() 40
*menuattributeset() 41
*menucase() 41
*menucounterset() 42
*menudefaultvalue() 42
*menuelse() 43
*menuendif() 43
*menuentitysubtype() 44
*menuentitytype() 44
*menuenum() 45
*menufield() 45
*menuif() 46
*menuinitialarrayvalue() 47
*menuinitialvalue() 47
*menulegalvalue() 48
*menulineend() 49
*menuoption() 49
*menuoptionend() 50
*menuoptionenum() 50
*menupointerset() 51
*menurestrictedvalue() 51
*menustring() 52
*menuvariableset() 52

295

*meshcontrols() 137
*metadata() 138
*modelcheckchecks() 138
*modelcheckcorrections() 139
*modelMOI() 140
*modules() 141
*nodes() 142
*nomenu() 53
*objectives() 143
*optiresponses() 143
*output() 143
*outputblocks() 144
*outputparameterizeddata() 144
*outputrequests() 145
*panels() 146
*parameters() 146
*partsets() 147
*physicalquantites() 148
*plies() 149
*plots() 150
*pointerset() 150
*points() 151
*populatemassthicknesstable() 151
*positions() 152
*pretensioners() 153
*properties() 154
*quote() 155
*rangeadd() 155
*rangereset() 156
*realprecision() 157
*regions() 157
*registerparameterizeddataappendstring() 158
*registerparameterizeddataendstring() 159
*registersolvercommentsyntaxstring() 159
*repeatcounter() 53
*repeatwrap() 54
*responses() 160
*results() 161
*retractors() 161
*return() 162
*rigidbodies() 163
*rigidwalls() 163
*scalefieldwidth() 164
*seatbeltcontrolpoints() 165
*seatbelts() 166
*segments() 167
*sensors() 167

296

*sequences() 168
*setcollector() 169
*setcurrentbagentitytype() 169
*setettypeelemtypereference() 171
*setformattype() 172
*setidmanagerexcludedidpools() 172
*setidmanagersupportedentitytypes() 173
*sets() 173
*setsolverusessegmentsets() 175
*shape3ds() 175
*shapes() 176
*sliprings() 177
*solvermasses() 177
*solversubmodels() 178
*sortelements() 179
*sortentity() 180
*sortloads() 181
*sortloadsteps() 182
*sortnodes() 183
*sortsets() 184
*specialidruletoignoreincomingids() 184
*string() 185
*stringtablereset() 186
*stringtablestore() 186
*stringwithcomments() 187
*structuralproperties() 187
*studies() 188
*subsystemconfigurations() 189
*subsystems() 190
*subsystemsets() 191
*surfaces() 191
*symmetrypivots() 192
*systcols() 193
*systems() 193
*tablenreset() 194
*tablenstore() 194
*tablereset() 194
*tables() 195
*tablestore() 196
*terminations() 196
*text() 197
*timestepcontrols() 197
*titles() 198
*transformations() 198
*uservariableset() 199
*variableset() 200
*vectorcols() 200

297

*vectors() 201
*vectortablereset() 201
*vectortablestore() 202
*weldlines() 203
*writegeometry() 203
*writenamedbuffer() 204

A
assembly output example 34

C
card preview 10
collected entities - solver templates 13

D
data entry and access - solver templates 13

E
element output example 33
equalities, inequalities and logical expressions 15
error messages - preview cards 16

F
functions - solver templates 15

G
getincludefullname 247

M
mathematical expressions - solver templates 14

N
named entities - solver templates 13
node output example 31
nodes - solver templates 12

O
organization - solver templates 12

P
preview cards - solver templates 16

298

	Contents
	Intellectual Property Rights Notice
	Technical Support
	1 Solver Templates
	1.1 Card Previewer
	1.2 Creating Solver Templates
	1.2.1 Organization
	Nodes
	Named Entities
	Collected Entities

	1.2.2 Data Entry and Access
	1.2.3 Mathematical Expressions
	1.2.4 Equalities, Inequalities and Logical Expressions
	1.2.5 Functions
	1.2.6 Previewing Cards
	Error Messages

	1.2.7 Node Output Example
	1.2.8 Element Output Example
	1.2.9 Assembly Output Example

	1.3 Commands and Functions
	1.3.1 Card Previewer Commands
	*begincardmenu()
	*beginmenu()
	*beginrepeat()
	*beginrepeat2d()
	*cardmenuitem()
	*endcardmenu()
	*endmenu()
	*endrepeat()
	*endrepeat2d()
	*enumeration()
	*globaldefaults()
	*menuattributecreate()
	*menuattributeset()
	*menucase()
	*menucounterset()
	*menudefaultvalue()
	*menuelse()
	*menuendif()
	*menuentitysubtype()
	*menuentitytype()
	*menuenum()
	*menufield()
	*menuif()
	*menuinitialarrayvalue()
	*menuinitialvalue()
	*menulegalvalue()
	*menulineend()
	*menuoption()
	*menuoptionend()
	*menuoptionenum()
	*menupointerset()
	*menurestrictedvalue()
	*menustring()
	*menuvariableset()
	*nomenu()
	*repeatcounter()
	*repeatwrap()
	Undocumented Card Previewer Commands
	*menuentitypointerset()

	1.3.2 Solver Template Commands
	*accelerometers()
	*addblock()
	*addcomment()
	*after()
	*aftercollector()
	*alefsiprojections()
	*alereferencesystemcurves()
	*alereferencesystemgroups()
	*alereferencesystemnodes()
	*alereferencessystemswitches()
	*alesmoothings()
	*aletanktests()
	*assemblies()
	*attachmentcontrols()
	*attachments()
	*bags()
	*beamsectcols()
	*beamsects()
	*before()
	*beforecollector()
	*beginlink()
	*blocks()
	*bodies()
	*boxes()
	*cards()
	*codename()
	*collections()
	*collisions()
	*comments()
	*components()
	*compressreal()
	*configurations()
	*connectorgroups()
	*connectorsets()
	*constrainedextranodes()
	*constrainedrigidbodies()
	*constraints()
	*contactsurfs()
	*contactbehaviors()
	*contactgroups()
	*controlvols()
	*counterinc()
	*counterset()
	*createmergedloadloadsteptable()
	*crosssections()
	*curves()
	*dampings()
	*define()
	*defineattribute()
	*defineentitytypealiasname()
	*deletemassthicknesstable()
	*deletemergedloadloadsteptable()
	*dequations()
	*designpointmethods()
	*designpoints()
	*designpointsets()
	*designvars()
	*desvarlinks()
	*directmatrixinputs()
	*dvprels()
	*elementareacalculation()
	*elementclusters()
	*elementresultstore()
	*elements()
	*else()
	*enabledatabase()
	*encryptions()
	*end()
	*endif()
	*endlink()
	*endloop()
	*endsegments()
	*entitypointerset()
	*equations()
	*errormessage()
	*executetclscript()
	*explorations()
	*failures()
	*field()
	*fieldleft()
	*fieldleftwithcomments()
	*fieldright()
	*fieldrightwithcomments()
	*fields()
	*fieldwithcomments()
	*format()
	*freebodygroups()
	*freebodysections()
	*frictions()
	*function()
	*geometricrepresentations()
	*geometryoverride()
	*groups()
	*hm_features()
	*hourglass()
	*if()
	*ignorecomment()
	*ignoreelemconfigtype()
	*include()
	*includefiles()
	*interfacecomponents()
	*interfacelinkings()
	*joints()
	*laminates()
	*lines()
	*lists()
	*loadcols()
	*loads()
	*loadsteps()
	*loopif()
	*markfailed()
	*masses()
	*materials()
	*mechanisms()
	*meshcontrols()
	*metadata()
	*modelcheckchecks()
	*modelcheckcorrections()
	*modelMOI()
	*modules()
	*nodes()
	*objectives()
	*optiresponses()
	*output()
	*outputblocks()
	*outputparameterizeddata()
	*outputrequests()
	*panels()
	*parameters()
	*partsets()
	*physicalquantites()
	*plies()
	*plots()
	*pointerset()
	*points()
	*populatemassthicknesstable()
	*positions()
	*pretensioners()
	*properties()
	*quote()
	*rangeadd()
	*rangereset()
	*realprecision()
	*regions()
	*registerparameterizeddataappendstring()
	*registerparameterizeddataendstring()
	*registersolvercommentsyntaxstring()
	*responses()
	*results()
	*retractors()
	*return()
	*rigidbodies()
	*rigidwalls()
	*scalefieldwidth()
	*seatbeltcontrolpoints()
	*seatbelts()
	*segments()
	*sensors()
	*sequences()
	*setcollector()
	*setcurrentbagentitytype()
	*setettypeelemtypereference()
	*setformattype()
	*setidmanagerexcludedidpools()
	*setidmanagersupportedentitytypes()
	*sets()
	*setsolverusessegmentsets()
	*shape3ds()
	*shapes()
	*sliprings()
	*solvermasses()
	*solversubmodels()
	*sortelements()
	*sortentity()
	*sortloads()
	*sortloadsteps()
	*sortnodes()
	*sortsets()
	*specialidruletoignoreincomingids()
	*string()
	*stringtablereset()
	*stringtablestore()
	*stringwithcomments()
	*structuralproperties()
	*studies()
	*subsystemconfigurations()
	*subsystems()
	*subsystemsets()
	*surfaces()
	*symmetrypivots()
	*systcols()
	*systems()
	*tablenreset()
	*tablenstore()
	*tablereset()
	*tables()
	*tablestore()
	*terminations()
	*text()
	*timestepcontrols()
	*titles()
	*transformations()
	*uservariableset()
	*variableset()
	*vectorcols()
	*vectors()
	*vectortablereset()
	*vectortablestore()
	*weldlines()
	*writegeometry()
	*writenamedbuffer()
	Deprecated Solver Template Commands
	Undocumented Solver Template Commands

	1.3.3 Solver Template Functions
	@acos()
	@activateNlgeomImpdyn()
	@allowduplicateids()
	@asin()
	@atan()
	@atan2()
	@attributearray2dcols()
	@attributearray2drows()
	@attributearray2dvalue()
	@attributearraylength()
	@attributearrayvalue()
	@attributearrayvalueinternalid()
	@attributeindexarray2dcols()
	@attributeindexarray2drows()
	@attributeindexarray2dvalue()
	@attributeindexarraylength()
	@attributeindexarrayvalue()
	@attributeindexbehavior()
	@attributeindexentityid()
	@attributeindexentitytype()
	@attributeindexentitytypename()
	@attributeindexidentifier()
	@attributeindexsolver()
	@attributeindexstatus()
	@attributeindextype()
	@attributeindexvalue()
	@attributereferencecount()
	@attributesmaxforsolver()
	@autocreateproperty()
	@checkfile()
	@checkmergeinclude()
	@compressNodeElems()
	@controlcardattributedefined()
	@cos()
	@count()
	@defaultstatus()
	@defined()
	@dofs()
	@elemcountperinclude()
	@entitygettype()
	@entityincollector()
	@entitymaxid()
	@enum()
	@exists()
	@exp()
	@exportdmiginlongformat()
	@exportsysteminlongformat()
	@fabs()
	@getattributearraylength()
	@getattributearrayvalue()
	@getattributearrayvaluebyinternalid1()
	@getattributearrayvaluebyinternalid2()
	@getattributevalueinternalid()
	@getcelltriplevalue()
	@getcelltype()
	@getcellvalue()
	@getcollectorcardimage()
	@getcollectorname()
	@getcollectornamebyinternalid()
	@getcolumnentitytype()
	@getcolumnlabel()
	@getcolumntype()
	@getcontrolcardattribute()
	@getcurrentincludeexportformat()
	@getdatabaseentitytypename()
	@getentityarrayvalue()
	@getentitycount()
	@getentitytype()
	@getentityvalue()
	@getentityvaluebyinternalid()
	@getentityvalueinternalid()
	@getidoffsetvalue()
	@getincludefullname()
	@getincludeidbyfilename()
	@getincludereferenceflag()
	@getinternalid()
	@getnewid()
	@getsolverid()
	@gettablecelltriplevalue()
	@gettablecelltype()
	@gettablecelltypebyinternalid()
	@gettablecellvalue()
	@gettablecellvaluebyinternalid()
	@gettablecolumnentitytype()
	@gettablecolumnlabel()
	@gettablecolumnsize()
	@gettablecolumnsizebyinternalid()
	@gettablecolumntype()
	@gettablecolumntypestring()
	@gettotalmass()
	@icedependentcount()
	@icedependentdof()
	@icedependentnode()
	@keywordrenumber()
	@loadexistinmergedloadloadsteptable()
	@log()
	@log10()
	@lookup()
	@magnitude()
	@namedentity()
	@nlookup()
	@partinstancemode()
	@pow()
	@rangecount()
	@rangeend()
	@rangestart()
	@remsuppressedincludefrommaster()
	@repeatkeywordtitles()
	@sin()
	@sqrt()
	@stringequal()
	@stringinstring()
	@stringlookup()
	@stringsplit()
	@stringstartswithnumericcharacter()
	@tan()
	@vectorlookup()
	@vectorlookupcomponent()
	@vectorlookupnotkey()
	@writehmcomments()
	@writenastranoldcontact()
	@writesolverfieldnames()
	@xpointelementoffsetvectorlocal()
	@xpointlocal()
	@xpointvectorlocal()
	@ypointelementoffsetvectorlocal()
	@ypointlocal()
	@ypointvectorlocal()
	@zpointelementoffsetvectorlocal()
	@zpointlocal()
	@zpointvectorlocal()
	Undocumented Solver Template Functions

	Index
	Special Characters
	A
	C
	D
	E
	F
	G
	M
	N
	O
	P

